Effect of nano-curcumin supplementation on cardiometabolic risk factors, physical and psychological quality of life, and depression in patients with coronary slow flow phenomenon: a randomized double-blind clinical trial

Tambe A, Demany M, Zimmerman HA, Mascarenhas E. Angina pectoris and slow flow velocity of dye in coronary arteries—a new angiographic finding. Am Heart J. 1972;84(1):66–71.

Article  CAS  PubMed  Google Scholar 

Wang X, Nie S-P. The coronary slow flow phenomenon: characteristics, mechanisms and implications. Cardiovasc Diagnos Ther. 2011;1(1):37.

Google Scholar 

Mangieri E, Macchiarelli G, Ciavolella M, Barillà F, Avella A, Martinotti A, Dell’Italia LJ, Scibilia G, Motta P, Campa PP. Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Cathet Cardiovasc Diagn. 1996;37(4):375–81.

Article  CAS  PubMed  Google Scholar 

Beltrame J, Ganz P: The coronary slow flow phenomenon. In: Chest pain with normal coronary arteries. edn. Springer; 2013: 101–117.

Beltrame JF, Limaye SB, Wuttke RD, Horowitz JD. Coronary hemodynamic and metabolic studies of the coronary slow flow phenomenon. Am Heart J. 2003;146(1):84–90.

Article  PubMed  Google Scholar 

Turhan H, Saydam GS, Erbay AR, Ayaz S, Yasar AS, Aksoy Y, Basar N, Yetkin E. Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow. Int J Cardiol. 2006;108(2):224–30.

Article  PubMed  Google Scholar 

Li JJ, Qin XW, Li ZC, Zeng HS, Gao Z, Xu B, Zhang CY, Li J. Increased plasma C-reactive protein and interleukin-6 concentrations in patients with slow coronary flow. Clin Chim Acta. 2007;385(1–2):43–7.

Article  CAS  PubMed  Google Scholar 

Adukauskienė D, Čiginskienė A, Adukauskaitė A, Pentiokinienė D, Šlapikas R, Čeponienė I. Clinical relevance of high sensitivity C-reactive protein in cardiology. Medicina (Kaunas). 2016;52(1):1–10.

Article  PubMed  Google Scholar 

Ucgun T, Başar C, Memişoğulları R, Demirin H, Türker Y, Aslantaş Y. Serum visfatin and omentin levels in slow coronary flow. Revista Portuguesa de Cardiologia (English edition). 2014;33(12):789–94.

Article  Google Scholar 

Romacho T, Sánchez-Ferrer CF, Peiró C. Visfatin/Nampt: an adipokine with cardiovascular impact. Mediators Inflamm. 2013;2013:946427.

Article  PubMed  PubMed Central  Google Scholar 

Andishmand A, Seyed Hossaini SM, Namayandeh SM, Mirjalili SR, Adelzadeh E, Entezari A: Sildenafil’s effectiveness in the primary coronary slow flow phenomenon: a randomized controlled clinical trial. medRxiv 2024:2024.2001. 2018.24301510.

Wang SH, Chu L, Xu Z, Zhou HL, Chen JF, Ning HF. Effect of Shexiang Tongxin dropping pills () on the immediate blood flow of patients with coronary slow flow. Chin J Integr Med. 2019;25(5):360–5.

Article  CAS  PubMed  Google Scholar 

Ozdogru I, Zencir C, Dogan A, Orscelik O, Inanc MT, Celik A, Gur M, Elbasan Z, Kalay N, Oguzhan A. Acute effects of intracoronary nitroglycerin and diltiazem in coronary slow flow phenomenon. J Investig Med. 2013;61(1):45–9.

Article  CAS  PubMed  Google Scholar 

Beltrame JF, Limaye SB, Horowitz JD. The coronary slow flow phenomenon–a new coronary microvascular disorder. Cardiology. 2002;97(4):197–202.

Article  PubMed  Google Scholar 

Elamragy AA, Abdelhalim AA, Arafa ME, Baghdady YM. Anxiety and depression relationship with coronary slow flow. PLoS ONE. 2019;14(9):e0221918.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 2008;267(1):133–64.

Article  CAS  PubMed  Google Scholar 

Ahmed T, Gilani AH. Therapeutic potential of turmeric in Alzheimer’s disease: curcumin or curcuminoids? Phytother Res. 2014;28(4):517–25.

Article  CAS  PubMed  Google Scholar 

Labban L. Medicinal and pharmacological properties of Turmeric (Curcuma longa): a review. Int J Pharm Biomed Sci. 2014;5(1):17–23.

Google Scholar 

Matias JN, Achete G. Campanari GSdS, Guiguer ÉL, Araújo AC, Buglio DS, Barbalho SM: A systematic review of the antidepressant effects of curcumin: beyond monoamines theory. Aust N Z J Psychiatry. 2021;55(5):451–62.

Article  PubMed  Google Scholar 

Kim SR, Park HJ, Bae YH, Ahn SC, Wee HJ, Yun I, Jang HO, Bae MK, Bae SK. Curcumin down-regulates visfatin expression and inhibits breast cancer cell invasion. Endocrinology. 2012;153(2):554–63.

Article  CAS  PubMed  Google Scholar 

Gorabi AM, Abbasifard M, Imani D, Aslani S, Razi B, Alizadeh S, Bagheri-Hosseinabadi Z, Sathyapalan T, Sahebkar A. Effect of curcumin on C-reactive protein as a biomarker of systemic inflammation: An updated meta-analysis of randomized controlled trials. Phytother Res. 2022;36(1):85–97.

Article  CAS  PubMed  Google Scholar 

Mahdavi A, Moradi S, Askari G, Iraj B, Sathyapalan T, Guest PC, Bagherniya M, Sahebkar A. Effect of curcumin on glycemic control in patients with type 2 diabetes: a systematic review of randomized clinical trials. Adv Exp Med Biol. 2021;1291:139–49.

Article  CAS  PubMed  Google Scholar 

Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49(Pt 6):580–8.

Article  CAS  PubMed  Google Scholar 

Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996;93(5):879–88.

Article  CAS  PubMed  Google Scholar 

Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):92.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

Article  CAS  PubMed  Google Scholar 

McHorney CA, Ware Jr JE, Raczek AE. The MOS 36-item short-form health survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31(3):247–63.

Smarr KL, Keefer AL. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire-9 (PHQ-9). Arthritis Care Res. 2011;63(S11):S454–66.

Article  Google Scholar 

Best L, Elliott AC, Brown PD. Curcumin induces electrical activity in rat pancreatic β-cells by activating the volume-regulated anion channel. Biochem Pharmacol. 2007;73(11):1768–75.

Article  CAS  PubMed  Google Scholar 

Ghorbani Z, Hekmatdoost A, Mirmiran P. Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Int J Endocrinol Metab. 2014;12(4):e18081.

Na LX, Li Y, Pan HZ, Zhou XL, Sun DJ, Meng M, Li XX, Sun CH. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res. 2013;57(9):1569–77.

Article  CAS  PubMed  Google Scholar 

Rahimi HR, Mohammadpour AH, Dastani M, Jaafari MR, Abnous K, Mobarhan MG, Oskuee RK. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial. Avicenna J Phytomed. 2016;6(5):567.

CAS  PubMed  PubMed Central  Google Scholar 

Sohaei S, Amani R, Tarrahi MJ, Ghasemi-Tehrani H. The effects of curcumin supplementation on glycemic status, lipid profile and hs-CRP levels in overweight/obese women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled clinical trial. Complement Ther Med. 2019;47:102201.

Article  PubMed  Google Scholar 

Usharani P, Mateen A, Naidu M, Raju Y, Chandra N. Effect of NCB-02, atorvastatin and placebo on endothelial function, oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus. Drugs R & D. 2008;9(4):243–50.

Article  CAS  Google Scholar 

Wang Z-B, Qiu C-G, Wang S-J, Han Z-Y, Huang Z-W, Sun G-j: Effect of HemoglobinA1C on the coronary flow velocity after percutaneous coronary intervention. 2015.

Yılmaz MB, Erdem A, Yontar OC, Sarıkaya S, Yılmaz A, Madak N, Karadaş F, Tandoğan İ. Relationship between HbA1c and coronary flow rate in patients with type 2 diabetes mellitus and angiographically normal coronary arteries. Turk Kardiyol Dern Ars. 2010;38(6):405–10.

PubMed  Google Scholar 

Dahl TB, Holm S, Aukrust P, Halvorsen B. Visfatin/NAMPT: a multifaceted molecule with diverse roles in physiology and pathophysiology. Annu Rev Nutr. 2012;32:229–43.

Article  CAS 

Comments (0)

No login
gif