Tambe A, Demany M, Zimmerman HA, Mascarenhas E. Angina pectoris and slow flow velocity of dye in coronary arteries—a new angiographic finding. Am Heart J. 1972;84(1):66–71.
Article CAS PubMed Google Scholar
Wang X, Nie S-P. The coronary slow flow phenomenon: characteristics, mechanisms and implications. Cardiovasc Diagnos Ther. 2011;1(1):37.
Mangieri E, Macchiarelli G, Ciavolella M, Barillà F, Avella A, Martinotti A, Dell’Italia LJ, Scibilia G, Motta P, Campa PP. Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Cathet Cardiovasc Diagn. 1996;37(4):375–81.
Article CAS PubMed Google Scholar
Beltrame J, Ganz P: The coronary slow flow phenomenon. In: Chest pain with normal coronary arteries. edn. Springer; 2013: 101–117.
Beltrame JF, Limaye SB, Wuttke RD, Horowitz JD. Coronary hemodynamic and metabolic studies of the coronary slow flow phenomenon. Am Heart J. 2003;146(1):84–90.
Turhan H, Saydam GS, Erbay AR, Ayaz S, Yasar AS, Aksoy Y, Basar N, Yetkin E. Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow. Int J Cardiol. 2006;108(2):224–30.
Li JJ, Qin XW, Li ZC, Zeng HS, Gao Z, Xu B, Zhang CY, Li J. Increased plasma C-reactive protein and interleukin-6 concentrations in patients with slow coronary flow. Clin Chim Acta. 2007;385(1–2):43–7.
Article CAS PubMed Google Scholar
Adukauskienė D, Čiginskienė A, Adukauskaitė A, Pentiokinienė D, Šlapikas R, Čeponienė I. Clinical relevance of high sensitivity C-reactive protein in cardiology. Medicina (Kaunas). 2016;52(1):1–10.
Ucgun T, Başar C, Memişoğulları R, Demirin H, Türker Y, Aslantaş Y. Serum visfatin and omentin levels in slow coronary flow. Revista Portuguesa de Cardiologia (English edition). 2014;33(12):789–94.
Romacho T, Sánchez-Ferrer CF, Peiró C. Visfatin/Nampt: an adipokine with cardiovascular impact. Mediators Inflamm. 2013;2013:946427.
Article PubMed PubMed Central Google Scholar
Andishmand A, Seyed Hossaini SM, Namayandeh SM, Mirjalili SR, Adelzadeh E, Entezari A: Sildenafil’s effectiveness in the primary coronary slow flow phenomenon: a randomized controlled clinical trial. medRxiv 2024:2024.2001. 2018.24301510.
Wang SH, Chu L, Xu Z, Zhou HL, Chen JF, Ning HF. Effect of Shexiang Tongxin dropping pills () on the immediate blood flow of patients with coronary slow flow. Chin J Integr Med. 2019;25(5):360–5.
Article CAS PubMed Google Scholar
Ozdogru I, Zencir C, Dogan A, Orscelik O, Inanc MT, Celik A, Gur M, Elbasan Z, Kalay N, Oguzhan A. Acute effects of intracoronary nitroglycerin and diltiazem in coronary slow flow phenomenon. J Investig Med. 2013;61(1):45–9.
Article CAS PubMed Google Scholar
Beltrame JF, Limaye SB, Horowitz JD. The coronary slow flow phenomenon–a new coronary microvascular disorder. Cardiology. 2002;97(4):197–202.
Elamragy AA, Abdelhalim AA, Arafa ME, Baghdady YM. Anxiety and depression relationship with coronary slow flow. PLoS ONE. 2019;14(9):e0221918.
Article CAS PubMed PubMed Central Google Scholar
Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 2008;267(1):133–64.
Article CAS PubMed Google Scholar
Ahmed T, Gilani AH. Therapeutic potential of turmeric in Alzheimer’s disease: curcumin or curcuminoids? Phytother Res. 2014;28(4):517–25.
Article CAS PubMed Google Scholar
Labban L. Medicinal and pharmacological properties of Turmeric (Curcuma longa): a review. Int J Pharm Biomed Sci. 2014;5(1):17–23.
Matias JN, Achete G. Campanari GSdS, Guiguer ÉL, Araújo AC, Buglio DS, Barbalho SM: A systematic review of the antidepressant effects of curcumin: beyond monoamines theory. Aust N Z J Psychiatry. 2021;55(5):451–62.
Kim SR, Park HJ, Bae YH, Ahn SC, Wee HJ, Yun I, Jang HO, Bae MK, Bae SK. Curcumin down-regulates visfatin expression and inhibits breast cancer cell invasion. Endocrinology. 2012;153(2):554–63.
Article CAS PubMed Google Scholar
Gorabi AM, Abbasifard M, Imani D, Aslani S, Razi B, Alizadeh S, Bagheri-Hosseinabadi Z, Sathyapalan T, Sahebkar A. Effect of curcumin on C-reactive protein as a biomarker of systemic inflammation: An updated meta-analysis of randomized controlled trials. Phytother Res. 2022;36(1):85–97.
Article CAS PubMed Google Scholar
Mahdavi A, Moradi S, Askari G, Iraj B, Sathyapalan T, Guest PC, Bagherniya M, Sahebkar A. Effect of curcumin on glycemic control in patients with type 2 diabetes: a systematic review of randomized clinical trials. Adv Exp Med Biol. 2021;1291:139–49.
Article CAS PubMed Google Scholar
Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49(Pt 6):580–8.
Article CAS PubMed Google Scholar
Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996;93(5):879–88.
Article CAS PubMed Google Scholar
Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):92.
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.
Article CAS PubMed Google Scholar
McHorney CA, Ware Jr JE, Raczek AE. The MOS 36-item short-form health survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31(3):247–63.
Smarr KL, Keefer AL. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire-9 (PHQ-9). Arthritis Care Res. 2011;63(S11):S454–66.
Best L, Elliott AC, Brown PD. Curcumin induces electrical activity in rat pancreatic β-cells by activating the volume-regulated anion channel. Biochem Pharmacol. 2007;73(11):1768–75.
Article CAS PubMed Google Scholar
Ghorbani Z, Hekmatdoost A, Mirmiran P. Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Int J Endocrinol Metab. 2014;12(4):e18081.
Na LX, Li Y, Pan HZ, Zhou XL, Sun DJ, Meng M, Li XX, Sun CH. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res. 2013;57(9):1569–77.
Article CAS PubMed Google Scholar
Rahimi HR, Mohammadpour AH, Dastani M, Jaafari MR, Abnous K, Mobarhan MG, Oskuee RK. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial. Avicenna J Phytomed. 2016;6(5):567.
CAS PubMed PubMed Central Google Scholar
Sohaei S, Amani R, Tarrahi MJ, Ghasemi-Tehrani H. The effects of curcumin supplementation on glycemic status, lipid profile and hs-CRP levels in overweight/obese women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled clinical trial. Complement Ther Med. 2019;47:102201.
Usharani P, Mateen A, Naidu M, Raju Y, Chandra N. Effect of NCB-02, atorvastatin and placebo on endothelial function, oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus. Drugs R & D. 2008;9(4):243–50.
Wang Z-B, Qiu C-G, Wang S-J, Han Z-Y, Huang Z-W, Sun G-j: Effect of HemoglobinA1C on the coronary flow velocity after percutaneous coronary intervention. 2015.
Yılmaz MB, Erdem A, Yontar OC, Sarıkaya S, Yılmaz A, Madak N, Karadaş F, Tandoğan İ. Relationship between HbA1c and coronary flow rate in patients with type 2 diabetes mellitus and angiographically normal coronary arteries. Turk Kardiyol Dern Ars. 2010;38(6):405–10.
Dahl TB, Holm S, Aukrust P, Halvorsen B. Visfatin/NAMPT: a multifaceted molecule with diverse roles in physiology and pathophysiology. Annu Rev Nutr. 2012;32:229–43.
Comments (0)