Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021;335:113518.
Article CAS PubMed Google Scholar
Sarmah D, Agrawal V, Rane P, Bhute S, Watanabe M, Kalia K, Ghosh Z, Dave KR, Yavagal DR, Bhattacharya P. Mesenchymal stem cell therapy in ischemic stroke: a Meta-analysis of Preclinical studies. Clin Pharmacol Ther. 2018;103(6):990–8.
Schmidt A, Minnerup J. Promoting recovery from ischemic stroke. Expert Rev Neurother. 2016;16(2):173–86.
Article CAS PubMed Google Scholar
Tanaka Y, Tanaka R, Liu M, Hattori N, Urabe T. Cilostazol attenuates ischemic brain injury and enhances neurogenesis in the subventricular zone of adult mice after transient focal cerebral ischemia. Neuroscience. 2010;171(4):1367–76.
Article CAS PubMed Google Scholar
Haupt M, Gerner ST, Bahr M, Doeppner TR. Neuroprotective strategies for ischemic stroke-future perspectives. Int J Mol Sci 2023, 24(5).
Kim H, Kong CS, Seo Y. Salidroside, 8(E)-Nuezhenide, and Ligustroside from Ligustrum japonicum Fructus inhibit expressions of MMP-2 and – 9 in HT 1080 Fibrosarcoma. Int J Mol Sci 2022, 23(5).
Jiang Y, Mao S, Huang W, Lu B, Cai Z, Zhou F, Li M, Lou T, Zhao Y. Phenylethanoid glycoside profiles and antioxidant activities of Osmanthus fragrans Lour. Flowers by UPLC/PDA/MS and simulated digestion model. J Agric Food Chem. 2016;64(12):2459–66.
Article CAS PubMed Google Scholar
Agbo MO, Odimegwu DC, Okoye FBC, Osadebe PO. Antiviral activity of Salidroside from the leaves of Nigerian mistletoe (Loranthus Micranthus Linn) parasitic on Hevea brasiliensis against respiratory syncytial virus. Pak J Pharm Sci. 2017;30(4):1251–6.
Tian X, Huang Y, Zhang X, Fang R, Feng Y, Zhang W, Li L, Li T. Salidroside attenuates myocardial ischemia/reperfusion injury via AMPK-induced suppression of endoplasmic reticulum stress and mitochondrial fission. Toxicol Appl Pharmcol. 2022;448:116093.
Jiang S, Fan F, Yang L, Chen K, Sun Z, Zhang Y, Cairang N, Wang X, Meng X. Salidroside attenuates high altitude hypobaric hypoxia-induced brain injury in mice via inhibiting NF-kappaB/NLRP3 pathway. Eur J Pharmacol. 2022;925:175015.
Article CAS PubMed Google Scholar
Luan X, Cui C, Jiang J, Wang C, Li L, Li H, Xu C, Li L, Chi Y, Yan G. Salidroside Mitigates Airway Inflammation in Asthmatic mice via the AMPK/Akt/GSK3beta signaling pathway. Int Arch Allergy Immunol. 2022;183(3):326–36.
Article CAS PubMed Google Scholar
Yao F, Jiang X, Qiu L, Peng Z, Zheng W, Ding L, Xia X. Long-term oral administration of Salidroside alleviates Diabetic Retinopathy in db/db mice. Front Endocrinol. 2022;13:861452.
Zhong Z, Han J, Zhang J, Xiao Q, Hu J, Chen L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des Devel Ther. 2018;12:1479–89.
Article CAS PubMed PubMed Central Google Scholar
Lai W, Zheng Z, Zhang X, Wei Y, Chu K, Brown J, Hong G, Chen L. Salidroside-mediated neuroprotection is Associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotox Res. 2015;28(2):108–21.
Article CAS PubMed Google Scholar
Wei Y, Hong H, Zhang X, Lai W, Wang Y, Chu K, Brown J, Hong G, Chen L. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation. 2017;40(4):1297–309.
Article CAS PubMed Google Scholar
Hu H, Li Z, Zhu X, Lin R, Chen L. Salidroside reduces cell mobility via NF- kappa B and MAPK signaling in LPS-Induced BV2 Microglial cells. Evidence-based Complement Altern Medicine: eCAM. 2014;2014:383821.
Lai W, Xie X, Zhang X, Wang Y, Chu K, Brown J, Chen L, Hong G. Inhibition of complement drives increase in early growth response proteins and neuroprotection mediated by Salidroside after cerebral ischemia. Inflammation. 2018;41(2):449–63.
Article CAS PubMed Google Scholar
Liu X, Wen S, Yan F, Liu K, Liu L, Wang L, Zhao S, Ji X. Salidroside provides neuroprotection by modulating microglial polarization after cerebral ischemia. J Neuroinflamm. 2018;15(1):39.
Wang Y, Su Y, Lai W, Huang X, Chu K, Brown J, Hong G. Salidroside restores an anti-inflammatory endothelial phenotype by selectively inhibiting endothelial complement after oxidative stress. Inflammation. 2020;43(1):310–25.
Article CAS PubMed Google Scholar
Han J, Xiao Q, Lin YH, Zheng ZZ, He ZD, Hu J, Chen LD. Neuroprotective effects of salidroside on focal cerebral ischemia/reperfusion injury involve the nuclear erythroid 2-related factor 2 pathway. Neural Regeneration Res. 2015;10(12):1989–96.
Zhong ZF, Han J, Zhang JZ, Xiao Q, Chen JY, Zhang K, Hu J, Chen LD. Neuroprotective effects of Salidroside on Cerebral Ischemia/Reperfusion-Induced behavioral impairment involves the Dopaminergic System. Front Pharmacol. 2019;10:1433.
Article CAS PubMed PubMed Central Google Scholar
Qu ZQ, Zhou Y, Zeng YS, Lin YK, Li Y, Zhong ZQ, Chan WY. Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS ONE. 2012;7(1):e29641.
Article CAS PubMed PubMed Central Google Scholar
Zhao HB, Ma H, Ha XQ, Zheng P, Li XY, Zhang M, Dong JZ, Yang YS. Salidroside induces rat mesenchymal stem cells to differentiate into dopaminergic neurons. Cell Biol Int. 2014;38(4):462–71.
Article CAS PubMed PubMed Central Google Scholar
Yan R, Xu H, Fu X. Salidroside protects hypoxia-induced injury by up-regulation of miR-210 in rat neural stem cells. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie. 2018;103:1490–7.
Chai Y, Cai Y, Fu Y, Wang Y, Zhang Y, Zhang X, Zhu L, Miao M, Yan T. Salidroside Ameliorates Depression by Suppressing NLRP3-Mediated Pyroptosis via P2X7/NF-κB/NLRP3 Signaling Pathway. Front Pharmacol. 2022;13:812362.
Article CAS PubMed PubMed Central Google Scholar
Zhang R, Engler A, Taylor V. Notch: an interactive player in neurogenesis and disease. Cell Tissue Res. 2018;371(1):73–89.
Article CAS PubMed Google Scholar
Li S, Yang Y, Li N, Li H, Xu J, Zhao W, Wang X, Ma L, Gao C, Ding Y et al. Limb remote ischemic conditioning promotes neurogenesis after cerebral ischemia by modulating miR-449b/Notch1 pathway in mice. Biomolecules 2022, 12(8).
Chen L, Huang K, Wang R, Jiang Q, Wu Z, Liang W, Guo R, Wang L. Neuroprotective Effects of Cerebral Ischemic Preconditioning in a Rat Middle Cerebral Artery Occlusion Model: The Role of the Notch Signaling Pathway. BioMed research international 2018, 2018:8168720.
Han J, Zhang JZ, Zhong ZF, Li ZF, Pang WS, Hu J, Chen LD. Gualou Guizhi decoction promotes neurological functional recovery and neurogenesis following focal cerebral ischemia/reperfusion. Neural Regeneration Res. 2018;13(8):1408–16.
Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11.
Article CAS PubMed Google Scholar
Shehadah A, Chen J, Pal A, He S, Zeitlin A, Cui X, Zacharek A, Cui Y, Roberts C, Lu M, et al. Human placenta-derived adherent cell treatment of experimental stroke promotes functional recovery after stroke in young adult and older rats. PLoS ONE. 2014;9(1):e86621.
Article PubMed PubMed Central Google Scholar
Li S, Lu Y, Ding D, Ma Z, Xing X, Hua X, Xu J. Fibroblast growth factor 2 contributes to the effect of salidroside on dendritic and synaptic plasticity after cerebral ischemia/reperfusion injury. Aging. 2020;12(11):10951–68.
Article CAS PubMed PubMed Central Google Scholar
Zuo W, Yan F, Zhang B, Hu X, Mei D. Salidroside improves brain ischemic injury by activating PI3K/Akt pathway and reduces complications induced by delayed tPA treatment. Eur J Pharmacol. 2018;830:128–38.
Comments (0)