Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).
Article CAS PubMed PubMed Central Google Scholar
Rashid, H. O. et al. ER stress: autophagy induction, inhibition and selection. Autophagy 11, 1956–1977 (2015).
Article CAS PubMed PubMed Central Google Scholar
Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).
Article CAS PubMed Google Scholar
Chowdhury, S. et al. Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A–WIPI4 complex. Proc. Natl Acad. Sci. USA 115, E9792–E9801 (2018).
Article CAS PubMed PubMed Central Google Scholar
Osawa, T. et al. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281–288 (2019).
Article CAS PubMed Google Scholar
Valverde, D. P. et al. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218, 1787–1798 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bozic, M. et al. A conserved ATG2–GABARAP family interaction is critical for phagophore formation. EMBO Rep. 21, e48412 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kotani, T. et al. The Atg2–Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc. Natl Acad. Sci. USA 115, 10363–10368 (2018).
Article CAS PubMed PubMed Central Google Scholar
Otomo, T., Chowdhury, S. & Lander, G. C.The rod-shaped ATG2A–WIPI4 complex tethers membranes in vitro. Contact (Thousand Oaks) https://doi.org/10.1177/2515256418819936 (2018).
Gomez-Sanchez, R. et al. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J. Cell Biol. 217, 2743–2763 (2018).
Article CAS PubMed PubMed Central Google Scholar
Tamura, N. et al. Differential requirement for ATG2A domains for localization to autophagic membranes and lipid droplets. FEBS Lett. 591, 3819–3830 (2017).
Article CAS PubMed Google Scholar
Maeda, S., Otomo, C. & Otomo, T. The autophagic membrane tether ATG2A transfers lipids between membranes. eLife 8, e45777 (2019).
Article PubMed PubMed Central Google Scholar
Proikas-Cezanne, T. et al. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J. Cell Sci. 128, 207–217 (2015).
Guardia, C. M. et al. Structure of human ATG9A, the only transmembrane protein of the core autophagy machinery. Cell Rep. 31, 107837 (2020).
Article CAS PubMed PubMed Central Google Scholar
Maeda, S. et al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol. 27, 1194–U246 (2020).
Article CAS PubMed PubMed Central Google Scholar
Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–U224 (2020).
Article CAS PubMed Google Scholar
Sawa-Makarska, J. et al. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science 369, eaaz7714 (2020).
Article CAS PubMed PubMed Central Google Scholar
Olivas, T. J. et al. ATG9 vesicles comprise the seed membrane of mammalian autophagosomes. J. Cell Biol. 222, e202208088 (2023).
Article CAS PubMed PubMed Central Google Scholar
Bieber, A. et al. In situ structural analysis reveals membrane shape transitions during autophagosome formation. Proc. Natl Acad. Sci. USA 119, e2209823119 (2022).
Article CAS PubMed PubMed Central Google Scholar
Orsi, A. et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23, 1860–1873 (2012).
Article CAS PubMed PubMed Central Google Scholar
Yamamoto, H. et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198, 219–233 (2012).
Article CAS PubMed PubMed Central Google Scholar
Puri, C. et al. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154, 1285–1299 (2013).
Article CAS PubMed PubMed Central Google Scholar
Ghanbarpour, A. et al. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc. Natl Acad. Sci. USA 118, e2101562118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Gotze, M. et al. A simple cross-linking/mass spectrometry workflow for studying system-wide protein interactions. Anal. Chem. 91, 10236–10244 (2019).
Dziurdzik, S. K. & Conibear, E. The Vps13 family of lipid transporters and its role at membrane contact sites. Int. J. Mol. Sci. 22, 2905 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhu, L. et al. TAPS: a traveling-salesman based automated path searching method for functional conformational changes of biological macromolecules. J. Chem. Phys. 150, 124105 (2019).
Xi, K. & Zhu, L. Automated path searching reveals the mechanism of hydrolysis enhancement by T4 lysozyme mutants. Int. J. Mol. Sci. 23, 14628 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wang, L. et al. DNA deformation exerted by regulatory DNA-binding motifs in human alkyladenine DNA glycosylase promotes base flipping. J. Chem. Inf. Model. 62, 3213–3226 (2022).
Xi, K. et al. Assessing the performance of traveling-salesman based automated path searching (TAPS) on complex biomolecular systems. J. Chem. Theory Comput. 17, 5301–5311 (2021).
Article CAS PubMed Google Scholar
Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).
Comments (0)