Schmidt, O. & Teis, D. The ESCRT machinery. Curr. Biol. 22, R116–R120 (2012).
Article CAS PubMed PubMed Central Google Scholar
Vietri, M. et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015).
Article CAS PubMed Google Scholar
Zhu, L., Jorgensen, J. R., Li, M., Chuang, Y.-S. & Emr, S. D. ESCRTs function directly on the lysosome membrane to downregulate ubiquitinated lysosomal membrane proteins. eLife 6, e26403 (2017).
Article PubMed PubMed Central Google Scholar
Huber, S. T., Mostafavi, S., Mortensen, S. A. & Sachse, C. Structure and assembly of ESCRT-III helical Vps24 filaments. Sci. Adv. 6, eaba4897 (2020).
Article CAS PubMed PubMed Central Google Scholar
McCullough, J. et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350, 1548–1551 (2015).
Article CAS PubMed PubMed Central Google Scholar
Pfitzner, A.-K., von Filseck, J. M. & Roux, A. Principles of membrane remodeling by dynamic ESCRT-III polymers. Trends Cell Biol. 31, 856–868 (2021).
Article CAS PubMed Google Scholar
Pfitzner, A.-K. et al. An ESCRT-III polymerization sequence drives membrane deformation and fission. Cell 182, 1140–1155.e18 (2020).
Article CAS PubMed PubMed Central Google Scholar
Gupta, T. K. et al. Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell 184, 3643–3659.e23 (2021).
Article CAS PubMed Google Scholar
Junglas, B. et al. PspA adopts an ESCRT-III-like fold and remodels bacterial membranes. Cell 184, 3674–3688.e18 (2021).
Article CAS PubMed Google Scholar
Liu, J. et al. Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. Cell 184, 3660–3673.e18 (2021).
Article CAS PubMed PubMed Central Google Scholar
Di Giulio, M. The phylogenetic distribution of the cell division system would not imply a cellular LUCA but a progenotic LUCA. Biosystems 210, 104563 (2021).
Kleerebezem, M. & Tommassen, J. Expression of the pspA gene stimulates efficient protein export in Escherichia coli. Mol. Microbiol. 7, 947–956 (1993).
Article CAS PubMed Google Scholar
Kobayashi, R., Suzuki, T. & Yoshida, M. Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol. Microbiol. 66, 100–109 (2007).
Article CAS PubMed Google Scholar
Hankamer, B. D., Elderkin, S. L., Buck, M. & Nield, J. Organization of the AAA+ adaptor protein PspA is an oligomeric ring. J. Biol. Chem. 279, 8862–8866 (2004).
Article CAS PubMed Google Scholar
Jovanovic, G. et al. The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli. J. Mol. Biol. 426, 1498–1511 (2014).
Article CAS PubMed Google Scholar
Joly, N. et al. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol. Rev. 34, 797–827 (2010).
Article CAS PubMed Google Scholar
Manganelli, R. & Gennaro, M. L. Protecting from envelope stress: variations on the phage-shock-protein theme. Trends Microbiol. 25, 205–216 (2017).
Article CAS PubMed Google Scholar
Hennig, R. et al. IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat. Commun. 6, 7018 (2015).
Article CAS PubMed Google Scholar
Junglas, B. et al. IM30 IDPs form a membrane-protective carpet upon super-complex disassembly. Commun. Biol. 3, 595 (2020).
Article CAS PubMed PubMed Central Google Scholar
Siebenaller, C., Junglas, B. & Schneider, D. Functional Implications of multiple IM30 oligomeric states. Front. Plant Sci. 10, 1500 (2019).
Article PubMed PubMed Central Google Scholar
Male, A. L., Oyston, P. C. F. & Tavassoli, A. Self-assembly of Escherichia coli phage shock protein A. Adv. Microbiol. 4, 353–359 (2014).
Theis, J. et al. VIPP1 rods engulf membranes containing phosphatidylinositol phosphates. Sci. Rep. 9, 8725 (2019).
Article PubMed PubMed Central Google Scholar
Azad, K. et al. Structural basis of CHMP2A–CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nat. Struct. Mol. Biol. 30, 81–90 (2023).
Article CAS PubMed Google Scholar
Nguyen, H. C. et al. Membrane constriction and thinning by sequential ESCRT-III polymerization. Nat. Struct. Mol. Biol. 27, 392–399 (2020).
Article CAS PubMed PubMed Central Google Scholar
Junglas, B., Siebenaller, C., Schlösser, L., Hellmann, N. & Schneider, D. GTP hydrolysis by Synechocystis IM30 does not decisively affect its membrane remodeling activity. Sci. Rep. 10, 9793 (2020).
Article CAS PubMed PubMed Central Google Scholar
Ohnishi, N., Zhang, L. & Sakamoto, W. VIPP1 involved in chloroplast membrane integrity has GTPase activity in vitro. Plant Physiol. 177, 328–338 (2018).
Article CAS PubMed PubMed Central Google Scholar
Siebenaller, C. et al. Binding and/or hydrolysis of purine-based nucleotides is not required for IM30 ring formation. FEBS Lett. 595, 1876–1885 (2021).
Article CAS PubMed Google Scholar
Lacabanne, D. et al. ATP analogues for structural investigations: case studies of a DnaB helicase and an ABC transporter. Molecules 25, 5268 (2020).
Article CAS PubMed PubMed Central Google Scholar
Krasteva, M. & Barth, A. Structures of the Ca2+-ATPase complexes with ATP, AMPPCP and AMPPNP. An FTIR study. Biochim. Biophys. Acta 1767, 114–123 (2007).
Article CAS PubMed Google Scholar
Doo Song, B., Leonard, M. & Schmid, S. L. Dynamin GTPase domain mutants that differentially affect GTP binding, GTP hydrolysis, and clathrin-mediated endocytosis. J. Biol. Chem. 279, 40431–40436 (2004).
Mierzwa, B. E. et al. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat. Cell Biol. 19, 787–798 (2017).
Comments (0)