Allani SK, Weissbach H, Lopez Toledano MA (2018) Sulindac induces differentiation of glioblastoma stem cells making them more sensitive to oxidative stress. Neoplasma 65(3):376–388. https://doi.org/10.4149/neo_2018_170404N245
Article CAS PubMed Google Scholar
Bakierzynska M, Cullinane MC, Redmond HP, Corrigan M (2023) Prophylactic aspirin intake and breast cancer risk; a systematic review and meta-analysis of observational cohort studies. Eur J Surg Oncol 49(10):106940. https://doi.org/10.1016/j.ejso.2023.05.015
Bogani G, Ray-Coquard I, Concin N, Ngoi NYL, Morice P, Enomoto T, Monk BJ (2021) Uterine serous carcinoma. Gynecol Oncol 162(1): 226–234. https://doi.org/10.1016/j.ygyno.2021.04.029
Boolbol SK, Dannenberg AJ, Chadburn A, Martucci C, Guo XJ, Ramonetti JT, Bertagnolli MM (1996) Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res, 56(11):2556–2560.
Borneman, R. M., Gavin, E., Musiyenko, A., Richter, W., Lee, K. J., Crossman, D. K., . . . da Silva, L. M. (2022). Phosphodiesterase 10A (PDE10A) as a novel target to suppress β-catenin and RAS signaling in epithelial ovarian cancer. J Ovarian Res, 15(1), 120. https://doi.org/10.1186/s13048-022-01050-9
Burke, C. A., Dekker, E., Lynch, P., Samadder, N. J., Balaguer, F., Hüneburg, R., . . . Cohen, A. (2020). Eflornithine plus Sulindac for Prevention of Progression in Familial Adenomatous Polyposis. N Engl J Med, 383(11), 1028–1039. https://doi.org/10.1056/NEJMoa1916063
Cha, B. K., Kim, Y. S., Hwang, K. E., Cho, K. H., Oh, S. H., Kim, B. R., . . . Kim, H. R. (2016). Celecoxib and sulindac inhibit TGF-β1-induced epithelial-mesenchymal transition and suppress lung cancer migration and invasion via downregulation of sirtuin 1. Oncotarget, 7(35), 57213–57227. https://doi.org/10.18632/oncotarget.11127
Crosbie EJ, Kitson SJ, McAlpine JN, Mukhopadhyay A, Powell ME, Singh N (2022) Endometrial cancer. Lancet 399(10333):1412–1428. https://doi.org/10.1016/s0140-6736(22)00323-3
Diakos CI, Charles KA, McMillan DC, Clarke SJ (2014) Cancer-related inflammation and treatment effectiveness. Lancet Oncol 15(11):e493-503. https://doi.org/10.1016/s1470-2045(14)70263-3
Gross ND, Bauman JE, Gooding WE, Denq W, Thomas SM, Wang L, Grandis JR (2014) Erlotinib, erlotinib-sulindac versus placebo: a randomized, double-blind, placebo-controlled window trial in operable head and neck cancer. Clin Cancer Res, 20(12), 3289–3298. https://doi.org/10.1158/1078-0432.Ccr-13-3360
Halim PA, Sharkawi SMZ, Labib MB (2023) Novel pyrazole-based COX-2 inhibitors as potential anticancer agents: Design, synthesis, cytotoxic effect against resistant cancer cells, cell cycle arrest, apoptosis induction and dual EGFR/Topo-1 inhibition. Bioorg Chem 131:106273. https://doi.org/10.1016/j.bioorg.2022.106273
Article CAS PubMed Google Scholar
Hamilton, C. A., Cheung, M. K., Osann, K., Chen, L., Teng, N. N., Longacre, T. A., . . . Chan, J. K. (2006). Uterine papillary serous and clear cell carcinomas predict for poorer survival compared to grade 3 endometrioid corpus cancers. Br J Cancer, 94(5), 642–646. https://doi.org/10.1038/sj.bjc.6603012
Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K (2019) Cyclooxygenase-2 in cancer: A review. J Cell Physiol 234(5):5683–5699. https://doi.org/10.1002/jcp.27411
Article CAS PubMed Google Scholar
Hossain, F., Ucar, D. A., Monticone, G., Ran, Y., Majumder, S., Larter, K., . . . Miele, L. (2023). Sulindac sulfide as a non-immune suppressive γ-secretase modulator to target triple-negative breast cancer. Front Immunol, 14, 1244159. https://doi.org/10.3389/fimmu.2023.1244159
Hosseini, F., Mahdian-Shakib, A., Jadidi-Niaragh, F., Enderami, S. E., Mohammadi, H., Hemmatzadeh, M., . . . Hassannia, H. (2018). Anti-inflammatory and anti-tumor effects of α-l-guluronic acid (G2013) on cancer-related inflammation in a murine breast cancer model. Biomed Pharmacother, 98, 793–800. https://doi.org/10.1016/j.biopha.2017.12.111
Hwang, K. E., Park, C., Kwon, S. J., Kim, Y. S., Park, D. S., Lee, M. K., . . . Kim, H. R. (2013). Synergistic induction of apoptosis by sulindac and simvastatin in A549 human lung cancer cells via reactive oxygen species-dependent mitochondrial dysfunction. Int J Oncol, 43(1), 262–270. https://doi.org/10.3892/ijo.2013.1933
Jung B, Barbier V, Brickner H, Welsh J, Fotedar A, McClelland M (2005) Mechanisms of sulindac-induced apoptosis and cell cycle arrest. Cancer Lett 219(1):15–25. https://doi.org/10.1016/j.canlet.2004.06.015
Article CAS PubMed Google Scholar
Karl T, Seibert N, Stöhr M, Osswald H, Rösl F, Finzer P (2007) Sulindac induces specific degradation of the HPV oncoprotein E7 and causes growth arrest and apoptosis in cervical carcinoma cells. Cancer Lett 245(1–2):103–111. https://doi.org/10.1016/j.canlet.2005.12.034
Article CAS PubMed Google Scholar
Kern MA, Schubert D, Sahi D, Schöneweiss MM, Moll I, Haugg AM, Schirmacher P. (2002) Proapoptotic and antiproliferative potential of selective cyclooxygenase-2 inhibitors in human liver tumor cells. Hepatology, 36(4 Pt 1), 885–894. https://doi.org/10.1053/jhep.2002.36125
Kim HR, Kim EJ, Yang SH, Jeong E. T, Park C, Kim SJ, Park R (2006) Combination treatment with arsenic trioxide and sulindac augments their apoptotic potential in lung cancer cells through activation of caspase cascade and mitochondrial dysfunction. Int J Oncol 28(6): 1401–1408.
Kim YS, Seol CH, Jung JW, Oh SJ, Hwang KE, Kim HJ, Kim HR (2015) Synergistic Effect of Sulindac and Simvastatin on Apoptosis in Lung Cancer A549 Cells through AKT-Dependent Downregulation of Survivin. Cancer Res Treat, 47(1):90–100. https://doi.org/10.4143/crt.2013.194
Ko CJ, Lan SW, Lu YC, Cheng TS, Lai PF, Tsai CH, Lee MS (2017) Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene, 36(32), 4597–4609. https://doi.org/10.1038/onc.2017.82
Konjalwar S, Ceyhan B, Rivera O, Nategh P, Neghabi M, Pavlovic M, Ranji M (2024) Demonstrating drug treatment efficacies by monitoring superoxide dynamics in human lung cancer cells with time-lapse fluorescence microscopy. J Biophotonics, 17(2): e202300331. https://doi.org/10.1002/jbio.202300331
Li M, Li M, Wei Y, Xu H (2020) Prognostic and clinical significance of cyclooxygenase-2 overexpression in endometrial cancer: a meta-analysis. Front Oncol 10:1202. https://doi.org/10.3389/fonc.2020.01202
Article PubMed PubMed Central Google Scholar
Li N, Xi Y, Tinsley HN, Gurpinar E, Gary BD, Zhu B, Piazza GA (2013) Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling. Mol Cancer Ther, 12(9): 1848–1859. https://doi.org/10.1158/1535-7163.Mct-13-0048
Lyndin M, Kravtsova O, Sikora K, Lyndina Y, Kuzenko Y, Awuah WA, Romaniuk A (2022) COX2 Effects on endometrial carcinomas progression. Pathol Res Pract, 238:154082. https://doi.org/10.1016/j.prp.2022.154082
Madka V, Patlolla JMR, Venkatachalam K, Zhang Y, Pathuri G, Stratton N, Rao CV (2023) Chemoprevention of Colon Cancer by DFMO, Sulindac, and NO-Sulindac Administered Individually or in Combinations in F344 Rats. Cancers (Basel), 15(15). https://doi.org/10.3390/cancers15154001
Meyerhardt JA, Shi Q, Fuchs CS, Meyer J, Niedzwiecki D, Zemla T, Shields AF (2021) Effect of celecoxib vs placebo added to standard adjuvant therapy on disease-free survival among patients with stage III colon cancer: the CALGB/SWOG 80702 (Alliance) Randomized Clinical Trial. Jama 325(13), 1277–1286. https://doi.org/10.1001/jama.2021.2454
Miliński M, Staś M, Rok J, Beberok A, Wrześniok D (2023) The effect of sulindac on redox homeostasis and apoptosis-related proteins in melanotic and amelanotic cells. Pharmacol Rep 75(4):995–1004. https://doi.org/10.1007/s43440-023-00493-1
Article CAS PubMed PubMed Central Google Scholar
Minami T, Adachi M, Kawamura R, Zhang Y, Shinomura Y, Imai K (2005) Sulindac enhances the proteasome inhibitor bortezomib-mediated oxidative stress and anticancer activity. Clin Cancer Res 11(14):5248–5256. https://doi.org/10.1158/1078-0432.Ccr-05-0085
Article CAS PubMed Google Scholar
Mohammed A, Yarla NS, Madka V, Rao CV (2018) Clinically relevant anti-inflammatory agents for chemoprevention of colorectal cancer: new perspectives. Int J Mol Sci, 19(8). https://doi.org/10.3390/ijms19082332
Moon EY, Lerner A (2002) Benzylamide sulindac analogues induce changes in cell shape, loss of microtubules and G(2)-M arrest in a chronic lymphocytic leukemia (CLL) cell line and apoptosis in primary CLL cells. Cancer Res 62(20):5711–5719
Poursoltani F, Nejati V, Pazhang Y, Rezaie J (2021) Sulindac and vitamin D3 synergically inhibit proliferation of MCF-7 breast cancer cell through AMPK/Akt/β-catenin axis in vitro. Cell Biochem Funct 39(8):991–997. https://doi.org/10.1002/cbf.3668
Article CAS PubMed Google Scholar
Qu W, Zhao Y, Wang X, Qi Y, Zhou C, Hua Y, Jiang SW (2019) Culture characters, genetic background, estrogen/progesterone receptor expression, and tumorigenic activities of frequently used sixteen endometrial cancer cell lines. Clin Chim Acta, 489:225–232. https://doi.org/10.1016/j.cca.2018.08.013
Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48. https://doi.org/10.3322/caac.21763
Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M (2010) The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol 2010:215158. https://doi.org/10.1155/2010/215158
Article CAS PubMed PubMed Central Google Scholar
Stein U, Arlt F, Smith J, Sack U, Herrmann P, Walther W, Schlag PM (2011) Intervening in β-catenin signaling by sulindac inhibits S100A4-dependent colon cancer metastasis. Neoplasia, 13(2): 131–144. https://doi.org/10.1593/neo.101172
Sui HH, Zhou YJ, Wang H, Li L, Cao M, Huang JJ (2018) Effects of sulindac sulfide on proliferation and apoptosis of human breast cancer cell. Oncol Lett 15(5):7981–7986. https://doi.org/10.3892/ol.2018.8331
Article CAS PubMed PubMed Central Google Scholar
Sun Y, Tang XM, Half E, Kuo MT, Sinicrope FA (2002) Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res 62(21):6323–6328
Suri A, Sheng X, Schuler KM, Zhong Y, Han X, Jones HM, Bae-Jump VL (2016) The effect of celecoxib on tumor growth in ovarian cancer cells and a genetically engineered mouse model of serous ovarian cancer. Oncotarget, 7(26):39582–39594. https://doi.org/10.18632/oncotarget.8659
Takiuchi T, Blake EA, Matsuo K, Sood AK, Brasky TM (2018) Aspirin use and endometrial cancer risk and survival. Gynecol Oncol 148(1):222–232. https://doi.org/10.1016/j.ygyno.2017.10.026
Article CAS PubMed Google Scholar
Thrastardottir TO, Copeland VJ, Constantinou C (2023) The association between nutrition, obesity, inflammation, and endometrial cancer: a scoping review. Curr Nutr Rep 12(1):98–121. https://doi.org/10.1007/s13668-022-00447-8
Toyoshima T, Kamijo R, Takizawa K, Sumitani K, Ito D, Nagumo M (2002) Inhibitor of cyclooxygenase-2 induces cell-cycle arrest in the epithelial cancer cell line via up-regulation of cyclin dependent kinase inhibitor p21. Br J Cancer 86(7):1150–1156. https://doi.org/10.1038/sj.bjc.6600183
Article CAS PubMed PubMed Central Google Scholar
Vaish V, Rana C, Piplani H, Vaiphei K, Sanyal SN (2014) Sulindac and Celecoxib regulate cell cycle progression by p53/p21 up regulation to induce apoptosis during initial stages of experimental colorectal cancer. Cell Biochem Biophys 68(2):301–319. https://doi.org/10.1007/s12013-013-9711-8
Article CAS PubMed Google Scholar
Vaish V, Sanyal SN (2012) Role of Sulindac and Celecoxib in the regulation of angiogenesis during the early neoplasm of colon: exploring PI3-K/PTEN/Akt pathway to the canonical Wnt/β-catenin signaling. Biomed Pharmacother 66(5):354–367. https://doi.org/10.1016/j.biopha.2012.01.004
Comments (0)