Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012:1097–105.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations, 2015.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, p. 1–9.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, p. 770–8.
Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016.
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, Lecun Y. Overfeat: integrated recognition, localization and detection using convolutional networks. In: International conference on learning representations, 2014.
Pinheiro PH, Collobert R. Recurrent convolutional neural networks for scene labeling. In: 31st International conference on machine learning, 2014.
Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution. In: European conference on computer vision. Springer, 2016, p. 694–711
Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, 2017, p. 2223–32
Chatterjee P, Milanfar P. Is denoising dead? IEEE Trans Image Process. 2009;19(4):895–911.
Article MathSciNet Google Scholar
Chen Y, Pock T. Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans Pattern Anal Mach Intell. 2016;39(6):1256–72.
Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans Image Process. 2017;26(7):3142–55.
Article MathSciNet Google Scholar
Liu D, Wen B, Fan Y, Loy CC, Huang TS. Non-local recurrent network for image restoration. Adv Neural Inf Process Syst 2018;31.
Liang J, Cao J, Sun G, Zhang K, Van Gool L, Timofte R. Swinir: image restoration using swin transformer. In: Proceedings of the IEEE/CVF international conference on computer vision, 2021, p. 1833–44.
Liu Y, Qin Z, Anwar S, Ji P, Kim D, Caldwell S, Gedeon T. Invertible denoising network: a light solution for real noise removal. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 2021; p. 13365–74.
Zamir SW, Arora A, Khan S, Hayat M, Khan FS, Yang MH, Shao L. Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 2021, p. 14821–31.
Kawar B, Vaksman G, Elad M. Stochastic image denoising by sampling from the posterior distribution. In: Proceedings of the IEEE/CVF international conference on computer vision 2021, p. 1866–75
Ohayon G, Adrai T, Vaksman G, Elad M, Milanfar P. High perceptual quality image denoising with a posterior sampling cgan. In: Proceedings of the IEEE/CVF international conference on computer vision, 2021, p. 1805–13
Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G. Low-dose CT via convolutional neural network. Biomed Opt Express. 2017;8(2):679–94.
Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging. 2018;37(6):1348–57.
Wolterink JM, Leiner T, Viergever MA, Išgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.
Shan H, Zhang Y, Yang Q, Kruger U, Kalra MK, Sun L, Cong W, Wang G. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans Med Imaging. 2018;37(6):1522–34.
You C, Yang Q, Gjesteby L, Li G, Ju S, Zhang Z, Zhao Z, Zhang Y, Cong W, Wang G, et al. Structurally-sensitive multi-scale deep neural network for low-dose CT denoising. IEEE Access. 2018;6:41839–55.
Choi K, Lim JS, Kim S. StatNet: statistical image restoration for low-dose CT using deep learning. IEEE J Sel Top Signal Process. 2020;14(6):1137–50.
AAPM. Low Dose CT Grand Challenge (2016). www.aapm.org/GrandChallenge/LowDoseCT
Batson J, Royer L. Noise2Self: blind denoising by self-supervision. In: International conference on machine learning, 2019, p. 524–33
Krull A, Buchholz TO, Jug F. Noise2void-learning denoising from single noisy images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2019, p. 2129–37
Laine S, Karras T, Lehtinen J, Aila T. High-quality self-supervised deep image denoising. In: Advances in neural information processing systems 2019, p. 6970–80.
Hsieh J. Computed tomography: principles, design, artifacts, and recent advances. SPIE; 2009.
Sidky E, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol. 2008;53(17):4777–807.
Yu H, Wang G. Compressed sensing based interior tomography. Phys Med Biol. 2009;54(9):2791–805.
Choi K, Wang J, Zhu L, Suh TS, Boyd S, Xing L. Compressed sensing based cone-beam computed tomography reconstruction with a first-order method. Med Phys. 2010;37:5113–25.
Ritschl L, Bergner F, Fleischmann C, Kachelrieß M. Improved total variation-based CT image reconstruction applied to clinical data. Phys Med Biol. 2011;56(6):1545–61.
Ramani S, Fessler JA. A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction. IEEE Trans Med Imaging. 2012;31(3):677–88.
Zeng GL, Li Y, Zamyatin A. Iterative total-variation reconstruction versus weighted filtered-backprojection reconstruction with edge-preserving filtering. Phys Med Biol. 2013;58(10):3413–31.
Choi K, Fahimian B, Li T, Suh TS, Xing L. Enhancement of four-dimensional cone-beam computed tomography by compressed sensing with Bregman iteration. J X-Ray Sci Technol. 2013;21(2):177–92.
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends® Mach Learn. 2011;3(1):1–122.
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, p. 3431–40
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, 2015, p. 234–41
Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, 2015, p. 91–9
Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017;36(12):2524–35.
Shan H, Padole A, Homayounieh F, Kruger U, Khera RD, Nitiwarangkul C, Kalra MK, Wang G. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Mach Intell. 2019;1(6):269.
Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 2017;44(10)
Zeng D, Wang L, Geng M, Li S, Deng Y, Xie Q, Li D, Zhang H, Li Y, Xu Z, et al. Noise-generating-mechanism-driven unsupervised learning for low-dose CT sinogram recovery. IEEE Trans Radiat Plasma Med Sci. 2021;6(4):404–14.
Blau Y, Michaeli T. The perception-distortion tradeoff. In: Proceedings of the IEEE conference on computer vision and pattern recognition 2018, p. 6228–37.
Freirich D, Michaeli T, Meir R. A theory of the distortion-perception tradeoff in wasserstein space. Adv Neural Inf Process Syst. 2021;34:25661–72.
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Inf Process Syst. 2014;5:2672–80.
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 2015.
Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, p. 1125–34
Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: Proceedings of the 34th international conference on machine learning, 2017, p. 214–23
Divakar N, Venkatesh Babu R. Image denoising via CNNs: an adversarial approach. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, p. 80–7
Dey R, Bhattacharjee D, Nasipuri M. Image denoising using generative adversarial network. Intell Comput Image Process Based Appl 2020;73–90
Yi X, Babyn P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging. 2018;31:655–69.
Choi K, Kim SW, Lim JS. Real-time image reconstruction for low-dose CT using deep convolutional generative adversarial networks (GANs). In: SPIE medical imaging 2018: physics of medical imaging, 2018;10573:1057332.
Goodfellow I. NIPS 2016 tutorial: generative adversarial networks. arXiv preprint arXiv:1701.00160 2016.
Choi K, Vania M, Kim S. Semi-supervised learning for low-dose CT image restoration with hierarchical deep generative adversarial network (HD-GAN). In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, 2019, p. 2683–6.
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision, 2021, p. 10012–22.
Zhu L, Han Y, Xi X, Fu H, Tan S, Liu M, Yang S, Liu C, Li L, Yan B. Stednet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Med Phys. 2023;50(7):4443–58.
Li H, Yang X, Yang S, Wang D, Jeon G. Transformer with double enhancement for low-dose CT denoising. IEEE J Biomed Health Inform. 2022;27(10):4660–71.
Yang L, Li Z, Ge R, Zhao J, Si H, Zhang D. Low-dose CT denoising via sinogram inner-structure transformer. IEEE Trans Med Imaging. 2023;42(4):910–21.
Luthra A, Sulakhe H, Mittal T, Iyer A, Yadav S. Eformer: edge enhancement based transformer for medical image denoising. arXiv preprint arXiv:2109.08044 2021.
Wang D, Fan F, Wu Z, Liu R, Wang F, Yu H. Ctformer: convolution-free token2token dilated vision transformer for low-dose CT denoising. Phys Med Biol. 2023;68(6): 065012.
Choi K, Li R, Nam H, Xing L. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods. Phys Med Biol. 2014;59(12):3097–119.
Lehtinen J, Munkberg J, Hasselgren J, Laine S, Karras T, Aittala M, Aila T. Noise2Noise: learning image restoration without clean data. In: International conference on machine learning, 2018, p. 2971–80.
Ehret T, Davy A, Morel JM, Facciolo G, Arias P. Model-blind video denoising via frame-to-frame training. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2019, p. 11369–78.
Wu D, Gong K, Kim K, Li X, Li Q. Consensus neural network for medical imaging denoising with only noisy training samples. In: International conference on medical image computing and computer-assisted intervention. Springer, 2019, p. 741–9.
Yuan N, Zhou J, Qi J. Half2Half: deep neural network based CT image denoising without independent reference data. Phys Med Biol. 2020;65(21): 215020.
Dabov K, Foi A, Katkovnik V, Egiazarian K. BM3D image denoising with shape-adaptive principal component analysis. In: Signal processing with adaptive sparse structured representations, 2009.
Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. IEEE Conf Comput Vis Pattern Recognit. 2005;2:60–5.
Choi K. Self-supervised projection denoising for low-dose cone-beam CT. In: 2021 43rd annual international conference of the IEEE engineering in medicine & biology society (EMBC). IEEE, 2021, p. 3459–62.
Choi K. A comparative study between image-and projection-domain self-supervised learning for ultra low-dose CBCT. In: 2022 44th annual international conference of the IEEE engineering in medicine & biology society (EMBC). IEEE, 2022, p. 2076–9
Hendriksen AA, Pelt DM, Batenburg KJ. Noise2inverse: self-supervised deep convolutional denoising for tomography. IEEE Trans Comput Imaging. 2020;6:1320–35.
Article MathSciNet Google Scholar
Wang G, Ye JC, De Man B. Deep learning for tomographic image reconstruction. Nat Mach Intell. 2020;2(12):737–48.
Choi K, Lim JS, Kim S. Self-supervised inter-and intra-slice correlation learning for low-dose CT image restoration without ground truth. Expert Syst Appl. 2022;209: 118072.
Niu C, Li M, Fan F, Wu W, Guo X, Lyu Q, Wang G. Noise suppression with similarity-based self-supervised deep learning. IEEE Trans Med Imaging. 2023.
Bai T, Wang B, Nguyen D, Jiang S. Probabilistic self-learning framework for low-dose CT denoising. Med Phys. 2021;48(5):2258–70.
Comments (0)