Chadha A, Jamal W, Aziz ARA, Rotimi VO. Overwhelming Streptococcus pyogenes sepsis in an elderly patient with septic arthritis. J Infect Public Health. 2018;11(3):434–5.
Ali A, Na M, Svensson MND, Magnusson M, Welin A, Schwarze JC, et al. IL-1 receptor antagonist treatment aggravates staphylococcal septic arthritis and Sepsis in mice. PLoS ONE. 2015;10(7):e0131645.
Article PubMed PubMed Central Google Scholar
Jung SW, Kim DH, Shin SJ, Kang BY, Eho YJ, Yang SW. Septic arthritis associated with systemic sepsis. Int Orthop. 2018;42(1):1–7.
Boff D, Crijns H, Teixeira M, Amaral F, Proost P. Neutrophils: beneficial and harmful cells in septic arthritis. Int J Mol Sci. 2018;19(2):468.
Article PubMed PubMed Central Google Scholar
Ross JJ. Septic arthritis of native joints. Infect Dis Clin North Am. 2017;31(2):203–18.
Favero M, Schiavon F, Riato L, Carraro V, Punzi L. Rheumatoid arthritis is the major risk factor for septic arthritis in rheumatological settings. Autoimmun Rev. 2008;8(1):59–61.
Article CAS PubMed Google Scholar
Goldenberg DL. Infectious arthritis complicating rheumatoid arthritis and other chronic rheumatic disorders. Arthritis Rheum. 1989;32(4):496–502.
Article CAS PubMed Google Scholar
Shirtliff ME, Mader JT. Acute Septic Arthritis. Clin Microbiol Rev. 2002;15(4):527–44.
Article PubMed PubMed Central Google Scholar
Elsissy JG, Liu JN, Wilton PJ, Nwachuku I, Gowd AK, Amin NH. Bacterial septic arthritis of the adult native knee Joint. JBJS Rev. 2020;8(1):e0059–0059.
Li N, Gao J, Mi L, Zhang G, Zhang L, Zhang N, et al. Synovial membrane mesenchymal stem cells: past life, current situation, and application in bone and joint diseases. Stem Cell Res Ther. 2020;11(1):381.
Article CAS PubMed PubMed Central Google Scholar
Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today. 2005;75(3):237–48.
Article CAS PubMed Google Scholar
Falconer J, Murphy AN, Young SP, Clark AR, Tiziani S, Guma M, et al. Review: synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2018;70(7):984–99.
Article CAS PubMed PubMed Central Google Scholar
Nanus DE, Badoume A, Wijesinghe SN, Halsey AM, Hurley P, Ahmed Z, et al. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets. EBioMedicine. 2021;72:103618.
Article PubMed PubMed Central Google Scholar
Bekeredjian-Ding I, Stein C, Uebele J. In. The Innate Immune Response against Staphylococcus aureus. Curr Top Microbiol Immunol. 2017:409:385-418.
Clement RGE, Hall AC, Wong SJ, Howie SEM, Simpson AHRW. Septic arthritis in an in vivo murine model induced by Staphylococcus aureus. Bone Joint Res. 2022;11(9):669–78.
Article PubMed PubMed Central Google Scholar
Boff D, Oliveira VLS, Queiroz Junior CM, Silva TA, Allegretti M, Verri WA et al. CXCR2 is critical for bacterial control and development of joint damage and pain in Staphylococcus aureus -induced septic arthritis in mouse. Eur J Immunol [Internet]. 2018;48(3):454–63. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/eji.201747198
Boff D, Oliveira VLS, Queiroz Junior CM, Galvão I, Batista NV, Gouwy M, et al. Lipoxin A 4 impairs effective bacterial control and potentiates joint inflammation and damage caused by Staphylococcus aureus infection. FASEB J. 2020;34(9):11498–510.
Article CAS PubMed Google Scholar
Kemble S, Croft AP. Critical role of synovial tissue–Resident Macrophage and Fibroblast subsets in the persistence of joint inflammation. Front Immunol. 2021;12.
Culemann S, Grüneboom A, Nicolás-Ávila JÁ, Weidner D, Lämmle KF, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572(7771):670–5.
Article CAS PubMed PubMed Central Google Scholar
Tsaltskan V, Firestein GS. Targeting fibroblast-like synoviocytes in rheumatoid arthritis. Curr Opin Pharmacol. 2022;67:102304.
Article CAS PubMed PubMed Central Google Scholar
Nagao A, Kobayashi M, Koyasu S, Chow CCT, Harada H. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Volume 20. International Journal of Molecular Sciences. MDPI AG; 2019.
Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V et al. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science (1979) [Internet]. 2014;345(6204). https://www.science.org/doi/https://doi.org/10.1126/science.1250684
Horng T. mTOR trains heightened macrophage responses. Trends Immunol. 2015;36(1):1–2.
Article CAS PubMed Google Scholar
Tannahill GM, Curtis AM, Adamik J, Palsson-Mcdermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238–42.
Article CAS PubMed PubMed Central Google Scholar
YANG C, ZHONG ZF, WANG SP, VONG CT, WANG YUB. YT. HIF-1: structure, biology and natural modulators. Chinese Journal of Natural Medicines. Volume 19. China Pharmaceutical University; 2021. pp. 521–7.
Laplante M, Sabatini DM. mTOR Signaling in Growth Control and Disease. Cell. 2012;149(2):274–93.
Article CAS PubMed PubMed Central Google Scholar
Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonça LE, Pacis A, et al. BCG educates hematopoietic stem cells to Generate Protective Innate immunity against tuberculosis. Cell. 2018;172(1–2):176–e19019.
Article CAS PubMed Google Scholar
Owen AM, Luan L, Burelbach KR, McBride MA, Stothers CL, Boykin OA et al. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages. Front Immunol. 2022;13.
Saeed S, Quintin J, Kerstens HHD, Rao NA, Aghajanirefah A, Matarese F et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science (1979). 2014;345(6204).
Kleinnijenhuis J, Quintin J, Preijers F, Joosten LAB, Ifrim DC, Saeed S, et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012;109(43):17537–42.
Article CAS PubMed PubMed Central Google Scholar
Sachs D, Coelho FM, Costa VV, Lopes F, Pinho V, Amaral FA, et al. Cooperative role of tumour necrosis factor-α, interleukin‐1β and neutrophils in a novel behavioural model that concomitantly demonstrates articular inflammation and hypernociception in mice. Br J Pharmacol. 2011;162(1):72–83.
Article CAS PubMed PubMed Central Google Scholar
Tsuboi H. Tartrate resistant acid phosphatase (TRAP) positive cells in rheumatoid synovium may induce the destruction of articular cartilage. Ann Rheum Dis. 2003;62(3):196–203.
Article CAS PubMed PubMed Central Google Scholar
Li J, Zhou H, Fu X, Zhang M, Sun F, Fan H. Dynamic role of macrophage CX3CR1 expression in inflammatory bowel disease. Immunology Letters. Volume 232. Elsevier B.V.; 2021. pp. 39–44.
Croft AP, Campos J, Jansen K, Turner JD, Marshall J, Attar M, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570(7760):246–51.
Article CAS PubMed PubMed Central Google Scholar
Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis — immune cell–fibroblast–bone interactions. Nat Rev Rheumatol. 2022;18(7):415–29.
Article CAS PubMed Google Scholar
Friščić J, Böttcher M, Reinwald C, Bruns H, Wirth B, Popp SJ, et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity. 2021;54(5):1002–e102110.
Helmke A, Nordlohne J, Balzer MS, Dong L, Rong S, Hiss M, et al. CX3CL1–CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis. Kidney Int. 2019;95(6):1405–17.
Comments (0)