Fibroblast growth factor receptor 4 deficiency in macrophages aggravates experimental colitis by promoting M1-polarization

Hodson R. Inflammatory bowel disease. Nature. 2016;540(7634):S97. https://doi.org/10.1038/540S97a.

Article  CAS  PubMed  Google Scholar 

Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RAR, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. 2018;15(1):39–49. https://doi.org/10.1038/nrgastro.2017.136.

Article  PubMed  Google Scholar 

Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16(9):531–43. https://doi.org/10.1038/s41575-019-0172-4.

Article  CAS  PubMed  Google Scholar 

Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91. https://doi.org/10.1016/j.immuni.2012.12.001.

Article  CAS  PubMed  Google Scholar 

De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N, et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell. 2018;175(2):400–e41513. https://doi.org/10.1016/j.cell.2018.07.048.

Article  CAS  PubMed  Google Scholar 

Park MD, Silvin A, Ginhoux F, Merad M. Macrophages in health and disease. Cell. 2022;185(23):4259–79. https://doi.org/10.1016/j.cell.2022.10.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084. https://doi.org/10.3389/fimmu.2019.01084.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.

Article  CAS  PubMed  Google Scholar 

Tsai CF, Chen GW, Chen YC, Shen CK, Lu DY, Yang LY, Chen JH, Yeh WL. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients. 2021;14(1):67. https://doi.org/10.3390/nu14010067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lissner D, Schumann M, Batra A, Kredel LI, Kühl AA, Erben U, et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis. 2015;21(6):1297–305. https://doi.org/10.1097/MIB.0000000000000384.

Article  PubMed  Google Scholar 

Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells. 2020;10(1):51. https://doi.org/10.3390/cells10010051.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gadaleta RM, Moschetta A. Metabolic messengers: fibroblast growth factor 15/19. Nat Metab. 2019;1(6):588–94. https://doi.org/10.1038/s42255-019-0074-3.

Article  PubMed  Google Scholar 

Wu AL, Coulter S, Liddle C, Wong A, Eastham-Anderson J, French DM, et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS ONE. 2011;6(3):e17868. https://doi.org/10.1371/journal.pone.0017868.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sawey ET, Chanrion M, Cai C, Wu G, Zhang J, Zender L, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell. 2011;19(3):347–58. https://doi.org/10.1016/j.ccr.2011.01.04.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li F, Li Z, Han Q, Cheng Y, Ji W, Yang Y, Lu S, Xia W. Enhanced autocrine FGF19/FGFR4 signaling drives the progression of lung squamous cell carcinoma, which responds to mTOR inhibitor AZD2104. Oncogene. 2020;39(17):3507–21. https://doi.org/10.1038/s41388-020-1227-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng S, Dakhova O, Creighton CJ, Ittmann M. Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression. Cancer Res. 2013;73(8):2551–62. https://doi.org/10.1158/0008-5472.CAN-12-4108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim RD, Sarker D, Meyer T, Yau T, Macarulla T, Park JW, et al. First-in-human phase I atudy of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discov. 2019;9(12):1696–707. https://doi.org/10.1158/2159-8290.CD-19-0555.

Article  CAS  PubMed  Google Scholar 

Zhou M, Zhu S, Xu C, Liu B, Shen J. A phase Ib/II study of BLU-554, a fibroblast growth factor receptor 4 inhibitor in combination with CS1001, an anti-PD-L1, in patients with locally advanced or metastatic hepatocellular carcinoma. Invest New Drugs. 2023;41(1):162–7. https://doi.org/10.1007/s10637-023-01335-w.

Article  CAS  PubMed  Google Scholar 

Lyutakov I, Nakov R, Valkov H, Vatcheva-Dobrevska R, Vladimirov B, Penchev P. Serum levels of fibroblast growth factor 19 correlate with the severity of diarrhea and independently from intestinal inflammation in patients with inflammatory bowel disease or microscopic colitis. Turk J Gastroenterol. 2021;32(4):374–81. https://doi.org/10.5152/tjg.2021.20247.

Article  PubMed  PubMed Central  Google Scholar 

Bourgonje AR, Hu S, Spekhorst LM, Zhernakova DV, Vich Vila A, Li Y, et al. The effect of phenotype and genotype on the plasma proteome in patients with inflammatory bowel disease. J Crohns Colitis. 2022;16(3):414–29. https://doi.org/10.1093/ecco-jcc/jjab157.

Article  PubMed  Google Scholar 

Wang J, Zhao H, Zheng L, Zhou Y, Wu L, Xu Y, et al. FGF19/SOCE/NFATc2 signaling circuit facilitates the self-renewal of liver cancer stem cells. Theranostics. 2021;11(10):5045–60. https://doi.org/10.7150/thno.56369.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan G, Zhao H, Zhang Q, Zhou Y, Wu L, Lei J, et al. A RIPK3-PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesis. Cancer Res. 2018;78(19):5586–99. https://doi.org/10.1158/0008-5472.CAN-17-3962.

Article  CAS  PubMed  Google Scholar 

Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2023;20(8):538–53. https://doi.org/10.1038/s41575-023-00769-0.

Article  PubMed  Google Scholar 

Lin X, Yosaatmadja Y, Kalyukina M, Middleditch MJ, Zhang Z, Lu X, Ding K, Patterson AV, Smaill JB, Squire CJ. Rotational freedom, steric hindrance, and protein dynamics explain BLU554 selectivity for the hinge cysteine of FGFR4. ACS Med Chem Lett. 2019;10(8):1180–6. https://doi.org/10.1021/acsmedchemlett.9b00196.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50. https://doi.org/10.1038/cr.2009.139.

Article  CAS  PubMed  Google Scholar 

Wende E, Laudeley R, Bleich A, Bleich E, Wetsel RA, Glage S, Klos A. The complement anaphylatoxin C3a receptor (C3aR) contributes to the inflammatory response in dextran sulfate sodium (DSS)-induced colitis in mice. PLoS ONE. 2013;8(4):e62257. https://doi.org/10.1371/journal.pone.0062257.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif