Hodson R. Inflammatory bowel disease. Nature. 2016;540(7634):S97. https://doi.org/10.1038/540S97a.
Article CAS PubMed Google Scholar
Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RAR, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. 2018;15(1):39–49. https://doi.org/10.1038/nrgastro.2017.136.
Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16(9):531–43. https://doi.org/10.1038/s41575-019-0172-4.
Article CAS PubMed Google Scholar
Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91. https://doi.org/10.1016/j.immuni.2012.12.001.
Article CAS PubMed Google Scholar
De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N, et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell. 2018;175(2):400–e41513. https://doi.org/10.1016/j.cell.2018.07.048.
Article CAS PubMed Google Scholar
Park MD, Silvin A, Ginhoux F, Merad M. Macrophages in health and disease. Cell. 2022;185(23):4259–79. https://doi.org/10.1016/j.cell.2022.10.007.
Article CAS PubMed PubMed Central Google Scholar
Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084. https://doi.org/10.3389/fimmu.2019.01084.
Article CAS PubMed PubMed Central Google Scholar
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.
Article CAS PubMed Google Scholar
Tsai CF, Chen GW, Chen YC, Shen CK, Lu DY, Yang LY, Chen JH, Yeh WL. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients. 2021;14(1):67. https://doi.org/10.3390/nu14010067.
Article CAS PubMed PubMed Central Google Scholar
Lissner D, Schumann M, Batra A, Kredel LI, Kühl AA, Erben U, et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis. 2015;21(6):1297–305. https://doi.org/10.1097/MIB.0000000000000384.
Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells. 2020;10(1):51. https://doi.org/10.3390/cells10010051.
Article CAS PubMed PubMed Central Google Scholar
Gadaleta RM, Moschetta A. Metabolic messengers: fibroblast growth factor 15/19. Nat Metab. 2019;1(6):588–94. https://doi.org/10.1038/s42255-019-0074-3.
Wu AL, Coulter S, Liddle C, Wong A, Eastham-Anderson J, French DM, et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS ONE. 2011;6(3):e17868. https://doi.org/10.1371/journal.pone.0017868.
Article CAS PubMed PubMed Central Google Scholar
Sawey ET, Chanrion M, Cai C, Wu G, Zhang J, Zender L, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell. 2011;19(3):347–58. https://doi.org/10.1016/j.ccr.2011.01.04.
Article CAS PubMed PubMed Central Google Scholar
Li F, Li Z, Han Q, Cheng Y, Ji W, Yang Y, Lu S, Xia W. Enhanced autocrine FGF19/FGFR4 signaling drives the progression of lung squamous cell carcinoma, which responds to mTOR inhibitor AZD2104. Oncogene. 2020;39(17):3507–21. https://doi.org/10.1038/s41388-020-1227-2.
Article CAS PubMed PubMed Central Google Scholar
Feng S, Dakhova O, Creighton CJ, Ittmann M. Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression. Cancer Res. 2013;73(8):2551–62. https://doi.org/10.1158/0008-5472.CAN-12-4108.
Article CAS PubMed PubMed Central Google Scholar
Kim RD, Sarker D, Meyer T, Yau T, Macarulla T, Park JW, et al. First-in-human phase I atudy of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discov. 2019;9(12):1696–707. https://doi.org/10.1158/2159-8290.CD-19-0555.
Article CAS PubMed Google Scholar
Zhou M, Zhu S, Xu C, Liu B, Shen J. A phase Ib/II study of BLU-554, a fibroblast growth factor receptor 4 inhibitor in combination with CS1001, an anti-PD-L1, in patients with locally advanced or metastatic hepatocellular carcinoma. Invest New Drugs. 2023;41(1):162–7. https://doi.org/10.1007/s10637-023-01335-w.
Article CAS PubMed Google Scholar
Lyutakov I, Nakov R, Valkov H, Vatcheva-Dobrevska R, Vladimirov B, Penchev P. Serum levels of fibroblast growth factor 19 correlate with the severity of diarrhea and independently from intestinal inflammation in patients with inflammatory bowel disease or microscopic colitis. Turk J Gastroenterol. 2021;32(4):374–81. https://doi.org/10.5152/tjg.2021.20247.
Article PubMed PubMed Central Google Scholar
Bourgonje AR, Hu S, Spekhorst LM, Zhernakova DV, Vich Vila A, Li Y, et al. The effect of phenotype and genotype on the plasma proteome in patients with inflammatory bowel disease. J Crohns Colitis. 2022;16(3):414–29. https://doi.org/10.1093/ecco-jcc/jjab157.
Wang J, Zhao H, Zheng L, Zhou Y, Wu L, Xu Y, et al. FGF19/SOCE/NFATc2 signaling circuit facilitates the self-renewal of liver cancer stem cells. Theranostics. 2021;11(10):5045–60. https://doi.org/10.7150/thno.56369.
Article CAS PubMed PubMed Central Google Scholar
Yan G, Zhao H, Zhang Q, Zhou Y, Wu L, Lei J, et al. A RIPK3-PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesis. Cancer Res. 2018;78(19):5586–99. https://doi.org/10.1158/0008-5472.CAN-17-3962.
Article CAS PubMed Google Scholar
Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2023;20(8):538–53. https://doi.org/10.1038/s41575-023-00769-0.
Lin X, Yosaatmadja Y, Kalyukina M, Middleditch MJ, Zhang Z, Lu X, Ding K, Patterson AV, Smaill JB, Squire CJ. Rotational freedom, steric hindrance, and protein dynamics explain BLU554 selectivity for the hinge cysteine of FGFR4. ACS Med Chem Lett. 2019;10(8):1180–6. https://doi.org/10.1021/acsmedchemlett.9b00196.
Article CAS PubMed PubMed Central Google Scholar
Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50. https://doi.org/10.1038/cr.2009.139.
Article CAS PubMed Google Scholar
Wende E, Laudeley R, Bleich A, Bleich E, Wetsel RA, Glage S, Klos A. The complement anaphylatoxin C3a receptor (C3aR) contributes to the inflammatory response in dextran sulfate sodium (DSS)-induced colitis in mice. PLoS ONE. 2013;8(4):e62257. https://doi.org/10.1371/journal.pone.0062257.
Comments (0)