Eisen D, Carrozzo M, Bagan Sebastian JV, et al. Number V Oral lichen planus: clinical features and management. Oral Dis. 2005;11(6):338–49. https://doi.org/10.1111/j.1601-0825.2005.01142.x.
Article CAS PubMed Google Scholar
Eisenberg E. Oral lichen planus: a benign lesion. J Oral Maxillofac Surg. 2000;58(11):1278–85. https://doi.org/10.1053/joms.2000.16629.
Article CAS PubMed Google Scholar
Vered M, Fürth E, Shalev Y, et al. Inflammatory cells of immunosuppressive phenotypes in oral lichen planus have a proinflammatory pattern of expression and are associated with clinical parameters. Clin Oral Invest. 2013;17(5):1365–73. https://doi.org/10.1007/s00784-012-0814-1.
Javvadi LR, Parachuru VP, Milne TJ, et al. Regulatory T-cells and IL17A(+) cells infiltrate oral lichen planus lesions. Pathology. 2016;48(6):564–73. https://doi.org/10.1016/j.pathol.2016.06.002.
Article CAS PubMed Google Scholar
Lu R, Zhou G, Du G, et al. Expression of T-bet and GATA-3 in peripheral blood mononuclear cells of patients with oral lichen planus. Arch Oral Biol. 2010;56(5):499–505. https://doi.org/10.1016/j.archoralbio.2010.11.006.
Article CAS PubMed Google Scholar
Godfrey DI, Uldrich AP, McCluskey J, et al. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16(11):1114–23. https://doi.org/10.1038/ni.3298.
Article CAS PubMed Google Scholar
Chen Z, Wang H, D’Souza C, et al. Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and costimulatory signals. Mucosal Immunol. 2017;10(1):58–68. https://doi.org/10.1038/mi.2016.39.
Article CAS PubMed Google Scholar
Lal KG, Kim D, Costanzo MC, et al. Dynamic MAIT cell response with progressively enhanced innateness during acute HIV-1 infection. Nat Commun. 2020;11(1):272. https://doi.org/10.1038/s41467-019-13975-9.
Article CAS PubMed PubMed Central Google Scholar
Zheng SW, Xu P, Cai LT, et al. The presence of Prevotella melaninogenica within tissue and preliminary study on its role in the pathogenesis of oral lichen planus. Oral Dis. 2022;28(6):1580–90. https://doi.org/10.1111/odi.13862.
Choi YS, Kim Y, Yoon HJ, et al. The presence of bacteria within tissue provides insights into the pathogenesis of oral lichen planus. Sci Rep-UK. 2016. https://doi.org/10.1038/srep29186.
Ma J, Zhang J, Zhang Y, et al. The magnitude of the association between human papillomavirus and oral lichen planus: a meta-analysis. PLoS ONE. 2016;11(8): e0161339. https://doi.org/10.1371/journal.pone.0161339.
Article CAS PubMed PubMed Central Google Scholar
Pol CA, Ghige SK, Gosavi SR. Role of human papilloma virus-16 in the pathogenesis of oral lichen planus–an immunohistochemical study. Int Dent J. 2015;65(1):11–4. https://doi.org/10.1111/idj.12125.
Walch M, Dotiwala F, Mulik S, Thiery J, Kirchhausen T, Clayberger C, et al. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell. 2014;157(6):1309–23. https://doi.org/10.1016/j.cell.2014.03.062.
Article CAS PubMed PubMed Central Google Scholar
Kurioka A, Ussher JE, Cosgrove C, et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 2015;8(2):429–40. https://doi.org/10.1038/mi.2014.81.
Article CAS PubMed Google Scholar
Qi C, Wang Y, Li P, et al. Gamma delta T cells and their pathogenic role in psoriasis. Front Immunol. 2021;12: 627139. https://doi.org/10.3389/fimmu.2021.627139.
Article CAS PubMed PubMed Central Google Scholar
Díaz-Basabe A, Burrello C, Lattanzi G, Botti F, Carrara A, Cassinotti E, et al. Human intestinal and circulating invariant natural killer T cells are cytotoxic against colorectal cancer cells via the perforin–granzyme pathway. Mol Oncol. 2021;15:3385–403. https://doi.org/10.1002/1878-0261.13104.
Article CAS PubMed PubMed Central Google Scholar
Jiang Q, Wang F, Yang J-Y, Zhou G. MAIT cells and their implication in human oral diseases. Inflamm Res. 2022;71:1041–54. https://doi.org/10.1007/s00011-022-01600-3.
Article CAS PubMed Google Scholar
Wei X-Y, Tan Y-Q, Zhou G. γδ T cells in oral diseases. Inflamm Res. 2024;73:867–76. https://doi.org/10.1007/s00011-024-01870-z.
Article CAS PubMed Google Scholar
Yang JY, Wang F, Zhou G. Characterization and function of circulating mucosal-associated invariant T cells and gammadeltaT cells in oral lichen planus. J Oral Pathol Med. 2022;51(1):74–85. https://doi.org/10.1111/jop.13250.
Article CAS PubMed Google Scholar
Zheng GX, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049. https://doi.org/10.1038/ncomms14049.
Article CAS PubMed PubMed Central Google Scholar
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-902 e21. https://doi.org/10.1016/j.cell.2019.05.031.
Article CAS PubMed PubMed Central Google Scholar
Bloom JD. Estimating the frequency of multiplets in single-cell RNA sequencing from cell-mixing experiments. PeerJ. 2018;6: e5578. https://doi.org/10.7717/peerj.5578.
Article PubMed PubMed Central Google Scholar
Concetti J, Wilson CL. NFKB1 and cancer: friend or foe? Cells. 2018;7(9):133. https://doi.org/10.3390/cells7090133.
Article CAS PubMed PubMed Central Google Scholar
Bilsborrow JB, Doherty E, Tilstam PV, et al. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin Ther Targets. 2019;23(9):733–44. https://doi.org/10.1080/14728222.2019.1656718.
Article CAS PubMed PubMed Central Google Scholar
Gutierrez-Arcelus M, Teslovich N, Mola AR, et al. Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions. Nat Commun. 2019;10(1):687. https://doi.org/10.1038/s41467-019-08604-4.
Article CAS PubMed PubMed Central Google Scholar
Chu Y, Dai E, Li Y, et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat Med. 2023. https://doi.org/10.1038/s41591-023-02371-y.
Article PubMed PubMed Central Google Scholar
Fang X, Bogomolovas J, Trexler C, et al. The BAG3-dependent and-independent roles of cardiac small heat shock proteins. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.126464.
Article PubMed PubMed Central Google Scholar
Hiebel C, Stürner E, Hoffmeister M, et al. BAG3 proteomic signature under proteostasis stress. Cells. 2020;9(11):2416. https://doi.org/10.3390/cells9112416.
Comments (0)