Function of unconventional T cells in oral lichen planus revealed by single-cell RNA sequencing

Eisen D, Carrozzo M, Bagan Sebastian JV, et al. Number V Oral lichen planus: clinical features and management. Oral Dis. 2005;11(6):338–49. https://doi.org/10.1111/j.1601-0825.2005.01142.x.

Article  CAS  PubMed  Google Scholar 

Eisenberg E. Oral lichen planus: a benign lesion. J Oral Maxillofac Surg. 2000;58(11):1278–85. https://doi.org/10.1053/joms.2000.16629.

Article  CAS  PubMed  Google Scholar 

Vered M, Fürth E, Shalev Y, et al. Inflammatory cells of immunosuppressive phenotypes in oral lichen planus have a proinflammatory pattern of expression and are associated with clinical parameters. Clin Oral Invest. 2013;17(5):1365–73. https://doi.org/10.1007/s00784-012-0814-1.

Article  Google Scholar 

Javvadi LR, Parachuru VP, Milne TJ, et al. Regulatory T-cells and IL17A(+) cells infiltrate oral lichen planus lesions. Pathology. 2016;48(6):564–73. https://doi.org/10.1016/j.pathol.2016.06.002.

Article  CAS  PubMed  Google Scholar 

Lu R, Zhou G, Du G, et al. Expression of T-bet and GATA-3 in peripheral blood mononuclear cells of patients with oral lichen planus. Arch Oral Biol. 2010;56(5):499–505. https://doi.org/10.1016/j.archoralbio.2010.11.006.

Article  CAS  PubMed  Google Scholar 

Godfrey DI, Uldrich AP, McCluskey J, et al. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16(11):1114–23. https://doi.org/10.1038/ni.3298.

Article  CAS  PubMed  Google Scholar 

Chen Z, Wang H, D’Souza C, et al. Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and costimulatory signals. Mucosal Immunol. 2017;10(1):58–68. https://doi.org/10.1038/mi.2016.39.

Article  CAS  PubMed  Google Scholar 

Lal KG, Kim D, Costanzo MC, et al. Dynamic MAIT cell response with progressively enhanced innateness during acute HIV-1 infection. Nat Commun. 2020;11(1):272. https://doi.org/10.1038/s41467-019-13975-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng SW, Xu P, Cai LT, et al. The presence of Prevotella melaninogenica within tissue and preliminary study on its role in the pathogenesis of oral lichen planus. Oral Dis. 2022;28(6):1580–90. https://doi.org/10.1111/odi.13862.

Article  PubMed  Google Scholar 

Choi YS, Kim Y, Yoon HJ, et al. The presence of bacteria within tissue provides insights into the pathogenesis of oral lichen planus. Sci Rep-UK. 2016. https://doi.org/10.1038/srep29186.

Article  Google Scholar 

Ma J, Zhang J, Zhang Y, et al. The magnitude of the association between human papillomavirus and oral lichen planus: a meta-analysis. PLoS ONE. 2016;11(8): e0161339. https://doi.org/10.1371/journal.pone.0161339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pol CA, Ghige SK, Gosavi SR. Role of human papilloma virus-16 in the pathogenesis of oral lichen planus–an immunohistochemical study. Int Dent J. 2015;65(1):11–4. https://doi.org/10.1111/idj.12125.

Article  PubMed  Google Scholar 

Walch M, Dotiwala F, Mulik S, Thiery J, Kirchhausen T, Clayberger C, et al. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell. 2014;157(6):1309–23. https://doi.org/10.1016/j.cell.2014.03.062.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurioka A, Ussher JE, Cosgrove C, et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 2015;8(2):429–40. https://doi.org/10.1038/mi.2014.81.

Article  CAS  PubMed  Google Scholar 

Qi C, Wang Y, Li P, et al. Gamma delta T cells and their pathogenic role in psoriasis. Front Immunol. 2021;12: 627139. https://doi.org/10.3389/fimmu.2021.627139.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Díaz-Basabe A, Burrello C, Lattanzi G, Botti F, Carrara A, Cassinotti E, et al. Human intestinal and circulating invariant natural killer T cells are cytotoxic against colorectal cancer cells via the perforin–granzyme pathway. Mol Oncol. 2021;15:3385–403. https://doi.org/10.1002/1878-0261.13104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Q, Wang F, Yang J-Y, Zhou G. MAIT cells and their implication in human oral diseases. Inflamm Res. 2022;71:1041–54. https://doi.org/10.1007/s00011-022-01600-3.

Article  CAS  PubMed  Google Scholar 

Wei X-Y, Tan Y-Q, Zhou G. γδ T cells in oral diseases. Inflamm Res. 2024;73:867–76. https://doi.org/10.1007/s00011-024-01870-z.

Article  CAS  PubMed  Google Scholar 

Yang JY, Wang F, Zhou G. Characterization and function of circulating mucosal-associated invariant T cells and gammadeltaT cells in oral lichen planus. J Oral Pathol Med. 2022;51(1):74–85. https://doi.org/10.1111/jop.13250.

Article  CAS  PubMed  Google Scholar 

Zheng GX, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049. https://doi.org/10.1038/ncomms14049.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-902 e21. https://doi.org/10.1016/j.cell.2019.05.031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bloom JD. Estimating the frequency of multiplets in single-cell RNA sequencing from cell-mixing experiments. PeerJ. 2018;6: e5578. https://doi.org/10.7717/peerj.5578.

Article  PubMed  PubMed Central  Google Scholar 

Concetti J, Wilson CL. NFKB1 and cancer: friend or foe? Cells. 2018;7(9):133. https://doi.org/10.3390/cells7090133.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bilsborrow JB, Doherty E, Tilstam PV, et al. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin Ther Targets. 2019;23(9):733–44. https://doi.org/10.1080/14728222.2019.1656718.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gutierrez-Arcelus M, Teslovich N, Mola AR, et al. Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions. Nat Commun. 2019;10(1):687. https://doi.org/10.1038/s41467-019-08604-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu Y, Dai E, Li Y, et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat Med. 2023. https://doi.org/10.1038/s41591-023-02371-y.

Article  PubMed  PubMed Central  Google Scholar 

Fang X, Bogomolovas J, Trexler C, et al. The BAG3-dependent and-independent roles of cardiac small heat shock proteins. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.126464.

Article  PubMed  PubMed Central  Google Scholar 

Hiebel C, Stürner E, Hoffmeister M, et al. BAG3 proteomic signature under proteostasis stress. Cells. 2020;9(11):2416. https://doi.org/10.3390/cells9112416.

Comments (0)

No login
gif