Adane AA, Alene KA, Koye DN, Zeleke BM (2013) Non-adherence to anti-tuberculosis treatment and determinant factors among patients with tuberculosis in Northwest Ethiopia. PLoS One 8:1–6. https://doi.org/10.1371/JOURNAL.PONE.0078791
Aggarwal A, Mehta S, Gupta D et al (2012) Clinical & immunological erythematosus patients characteristics in systemic lupus Maryam. J Dent Educ 76:1532–1539. https://doi.org/10.4103/ijmr.IJMR
Ahmad Khan F, Fox G, Menzies D (2017) Drug-resistant tuberculosis BT - Handbook of Antimicrobial Resistance. In: Berghuis A, Matlashewski G, Wainberg MA et al (eds) Springer. New York, NY, New York, pp 263–286
Ahmed S, Nandi S, Saxena AK (2022) An updated patent review on drugs for the treatment of tuberculosis (2018-present). Expert Opin Ther Pat 32:243–260. https://doi.org/10.1080/13543776.2022.2012151
Article PubMed CAS Google Scholar
Alejandra Isabel J-G, Miroslava F-P, Rafael L-L (2019) Second-line injectable drugs for the treatment of multidrug-resistant tuberculosis. Why do we keep using them? Rev Am Med Respir 19:175–178
Alejandra Isabel J-G, Miroslava F-P, Rafael L-L (2019) Second-line injectable drugs for the treatment of multidrug-resistant tuberculosis. Why do we keep using them? Rev Am Med Respir 3:175–178
Alemu A, Bitew ZW, Diriba G et al (2023) Incidence and predictors of acquired resistance to second-line antituberculosis drugs during the course of multi-drug resistant tuberculosis treatment: protocol for a systematic review and meta-analysis. BMJ Open 13:e070143. https://doi.org/10.1136/bmjopen-2022-070143
Article PubMed PubMed Central Google Scholar
Ali MZ, Dutt TS, MacNeill A et al (2024) A modified BPaL regimen for tuberculosis treatment replaces linezolid with inhaled spectinamides. bioRxiv. https://doi.org/10.1101/2023.11.16.567434
Article PubMed PubMed Central Google Scholar
Alliance Global (2008) Handbook of Anti Tuberculosis Agents, New York, NY. Global Alliance for TB Drug Development 88(2):85–170
Allue-Guardia A, García JI, Torrelles JB (2021) Evolution of drug-resistant mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front Microbiol 12:1–21. https://doi.org/10.3389/FMICB.2021.612675/BIBTEX
Alzahabi KH, Usmani O, Georgiou TK et al (2020) Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerg Top Life Sci 4:581–600. https://doi.org/10.1042/ETLS20190154
Article PubMed PubMed Central CAS Google Scholar
American Diabetes Association Professional Practice Committee (2021) Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes—2022. In: Diabetes Care. American Diabetes Association Professional Practice Committee, pp 46–59
Aubry A, Veziris N, Cambau E et al (2006) Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 50:104–112. https://doi.org/10.1128/AAC.50.1.104-112.2006
Article PubMed PubMed Central CAS Google Scholar
Aung KJM, Van Deun A, Declercq E et al (2014) Successful “9-month Bangladesh regimen” for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc lung Dis 18:1180–1187. https://doi.org/10.5588/IJTLD.14.0100
Article PubMed CAS Google Scholar
Ayukekbong JA, Ntemgwa M, Atabe AN (2017) The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob Resist Infect Control 6:1–8. https://doi.org/10.1186/S13756-017-0208-X/TABLES/2
Bakhtiyariniya P, Khosravi AD, Hashemzadeh M, Savari M (2022) Detection and characterization of mutations in genes related to isoniazid resistance in Mycobacterium tuberculosis clinical isolates from Iran. Mol Biol Rep 49:6135–6143. https://doi.org/10.1007/S11033-022-07404-2/TABLES/4
Article PubMed PubMed Central CAS Google Scholar
Bakuba Z, Napiórkowska A, Bielecki J et al (2013) Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant mycobacterium tuberculosis clinical isolates from Poland. Biomed Res Int 2013:1–5. https://doi.org/10.1155/2013/167954
Baranyai Z, Soria-Carrera H, Alleva M et al (2021) Nanotechnology-based targeted drug delivery: an emerging tool to overcome tuberculosis. Adv Ther 4:1–22. https://doi.org/10.1002/ADTP.202000113
Beviere M, Reissier S, Penven M et al (2023) The role of next-generation sequencing (NGS) in the management of tuberculosis: practical review for implementation in routine. Pathogens 12:978. https://doi.org/10.3390/PATHOGENS12080978
Article PubMed PubMed Central CAS Google Scholar
Bollela VR, Namburete EI, Feliciano CS et al (2017) Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int J Tuberc Lung Dis 20:1099–1104. https://doi.org/10.5588/ijtld.15.0864
Borah Slater K, Kim D, Chand P et al (2023) A current perspective on the potential of nanomedicine for anti-tuberculosis therapy. Trop Med Infect Dis 8:100–112. https://doi.org/10.3390/TROPICALMED8020100
Article PubMed PubMed Central Google Scholar
Bourguignon T, Godinez-Leon JA, Gref R (2023) Nanosized drug delivery systems to fight tuberculosis. Pharmaceutics 15:1–42. https://doi.org/10.3390/pharmaceutics15020393
Brossier F, Pham A, Bernard C et al (2017) Molecular investigation of resistance to second-line injectable drugs in multidrug-resistant clinical isolates of Mycobacterium tuberculosis in France. Antimicrob Agents Chemother 61:1–9. https://doi.org/10.1128/AAC.01299-16
Bu Q, Qiang R, Fang L et al (2023) Global trends in the incidence rates of MDR and XDR tuberculosis: findings from the global burden of disease study 2019. Front Pharmacol 14:1–9. https://doi.org/10.3389/fphar.2023.1156249
Calligaro GL, Moodley L, Symons G, Dheda K (2014) The medical and surgical treatment of drug-resistant tuberculosis. J Thorac Dis 6:186–195. https://doi.org/10.3978/J.ISSN.2072-1439.2013.11.11
Article PubMed PubMed Central Google Scholar
Campbell PJ, Morlock GP, Sikes RD et al (2011) Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 55:2032–2041. https://doi.org/10.1128/AAC.01550-10
Article PubMed PubMed Central CAS Google Scholar
CDC (2016a) Fact sheets | drug-resistant TB | extensively drug-resistant tuberculosis (XDR TB) | TB | CDC. In: Cent. Dis. Control Prev. https://www.cdc.gov/tb/publications/factsheets/drtb/xdrtb.htm. Accessed 5 Jun 2023
CDC (2016b) Fact sheets | drug-resistant tb | extensively drug-resistant tuberculosis (XDR TB) | TB | CDC. In: Cent. Dis. Control Prev. https://www.cdc.gov/tb/publications/factsheets/drtb/xdrtb.htm. Accessed 26 May 2023
CDC (2016c) TB diagnostic tool: Xpert MTB/RIF assay fact sheet | TB | CDC. In: Cell. Mol. Neurobiol. https://www.cdc.gov/tb/publications/factsheets/testing/xpert_mtb-rif.htm. Accessed 22 Mar 2024
CDC (2016d) General Considerations for treatment of TB fact sheet | TB | CDC. https://www.cdc.gov/tb/publications/factsheets/treatment/treatmenthivnegative.htm#:~:text=Regimens for treating TB disease,after 2 months of treatment. Accessed 7 Jun 2023
CDC (2021) Diagnosis of tuberculosis disease. in: core curriculum on tuberculosis: what the clinician should know. Centers for Disease Control and Prevention, pp 75–107
CDC (2022) Drug-resistant TB | TB |CDC. In: Centers Dis. Control Prev. https://www.cdc.gov/tb/topic/drtb/default.htm. Accessed 7 Jun 2023
CDC (2023) About drug-resistant tuberculosis disease | tuberculosis (TB) | CDC. https://www.cdc.gov/tb/about/drug-resistant.html. Accessed 7 Aug 2024
CDC (2024a) Clinical overview of drug-resistant tuberculosis disease | tuberculosis (TB) | CDC. https://www.cdc.gov/tb/hcp/clinical-overview/drug-resistant-tuberculosis-disease.html. Accessed 7 Aug 2024
CDC (2024b) Bedaquiline, pretomanid, and linezolid (BPaL) | TB |CDC. In: Cent. Dis. Control Prev. https://www.cdc.gov/tb/topic/drtb/bpal/default.htm. Accessed 22 Mar 2024
Chiang CY, Centis R, Migliori GB (2010) Drug-resistant tuberculosis: past, present, future. Respirology 15:413–432. https://doi.org/10.1111/J.1440-1843.2010.01738.X
Chopra H, Mohanta YK, Rauta PR et al (2023) An insight into advances in developing nanotechnology based therapeutics, drug delivery, diagnostics and vaccines: multidimensional applications in tuberculosis disease management. Pharmaceuticals 16:581–617. https://doi.org/10.3390/PH16040581
Article PubMed PubMed Central CAS Google Scholar
Chung-Delgado K, Guillen-Bravo S, Revilla-Montag A, Bernabe-Ortiz A (2015) Mortality among MDR-TB cases: comparison with drug-susceptible tuberculosis and associated factors. PLoS One 10:1–10. https://doi.org/10.1371/journal.pone.0119332
Conkle-Gutierrez D, Kim C, Ramirez-Busby SM et al (2022) Distribution of common and rare genetic markers of second-line-injectable-drug resistance in Mycobacterium tuberculosis revealed by a genome-wide association study. Antimicrob Agents Chemother 66:1–12. https://doi.org/10.1128/AAC.02075-21
Cuevas-Córdoba B, Cuellar-Sánchez A, Pasissi-Crivelli A et al (2013) rrs and rpsL mutations in streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico. J Microbiol Immunol Infect 46:30–34. https://doi.org/10.1016/J.JMII.2012.08.020
Comments (0)