Comparative effects of dexpanthenol and thymoquinone on colistin-induced neurotoxicity in rats

Abdulle A-E et al (2020) Serum free thiols predict cardiovascular events and all-cause mortality in the general population: A prospective cohort study. BMC Med 18:1–12. https://doi.org/10.1186/s12916-020-01587-w

Article  CAS  Google Scholar 

Aslan T et al (2021) Dexpanthenol and ascorbic acid ameliorate colistin-induced nephrotoxicity in rats. Eur Rev Med Pharmacol Sci 25;1016–1023. https://doi.org/10.26355/eurrev_202101_24671

Aycan I-O et al (2014) Thymoquinone treatment against acetaminophen-induced hepatotoxicity in rats. Int J Surg 12(3):213–218. https://doi.org/10.1016/j.ijsu.2013.12.013

Article  PubMed  Google Scholar 

Benhar M (2020) Oxidants, antioxidants and thiol redox switches in the control of regulated cell death pathways. Antioxidants 9(4):309. https://doi.org/10.3390/antiox9040309

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birben E, Sahiner U-M, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19. https://doi.org/10.1097/WOX.0b013e3182439613

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Article  CAS  PubMed  Google Scholar 

Cagin Y-F, Parlakpinar H, Vardi N, Polat A, Atayan Y, Erdogan M-A, Tanbek K (2016) Effects of dexpanthenol on acetic acid induced colitis in rats. Exp Ther Med 12(5):2958–2964. https://doi.org/10.3892/etm.2016.3728

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai C, Tang S, Velkov T, Xiao X (2016) Colistin-induced apoptosis of neuroblastoma-2a cells involves the generation of reactive oxygen species, mitochondrial dysfunction, and autophagy. Mol Neurobiol 53:4685–4700. https://doi.org/10.1007/s12035-015-9396-7

Article  CAS  PubMed  Google Scholar 

Dai C, Ciccotosto G-D, Cappai R, Wang Y, Tang S, Hoyer D, Schneider E-K, Velkov T, Xiao X (2017) Rapamycin confers neuroprotection against colistin-induced oxidative stress, mitochondria dysfunction, and apoptosis through the activation of autophagy and mTOR/Akt/CREB signaling pathways. ACS Chem Neurosci 9(4):824–837. https://doi.org/10.1021/acschemneuro.7b00323

Article  CAS  Google Scholar 

Dai C et al (2018) Molecular mechanisms of neurotoxicity induced by polymyxins and chemoprevention. ACS Chem Neurosci 10(1):120–131. https://doi.org/10.1021/acschemneuro.8b00300

Article  CAS  PubMed  Google Scholar 

Dai C, Wang Y, Sharma G, Shen J, Velkov T, Xiao X (2020) Polymyxins–curcumin combination antimicrobial therapy: Safety implications and efficacy for infection treatment. Antioxidants 9(6):506. https://doi.org/10.3390/antiox9060506

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dortet L et al (2018) Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria. Sci Rep 8(1):16910. https://doi.org/10.1038/s41598-018-35041-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erel O (2004) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37(2):112–119. https://doi.org/10.1016/j.clinbiochem.2003.10.014

Article  CAS  PubMed  Google Scholar 

Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12):1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008

Article  CAS  PubMed  Google Scholar 

Erel O, Erdoğan S (2020) Thiol-disulfide homeostasis: an integrated approach with biochemical and clinical aspects. Turkish J Med Sci 50(10):1728–1738. https://doi.org/10.3906/sag-2003-64

Article  CAS  Google Scholar 

Erel O, Neselioglu S (2014) A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 47(18):326–332. https://doi.org/10.1016/j.clinbiochem.2014.09.026

Article  CAS  PubMed  Google Scholar 

Falagas M-E, Kasiakou S-K, Tsiodras S (2006) The use of intravenous and aerosolized polymyxins for the treatment of infections in critically ill patients: a review of the recent literature. Clin Med Res 4(2):138–146. https://doi.org/10.3121/cmr.4.2.138

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farkhondeh T, Samarghandian S, Shahri A-M-P, Samini F (2018) The neuroprotective effects of thymoquinone: a review. Dose-response 16(2). https://doi.org/10.1177/1559325818761455

Ghlissi Z et al (2018) Combined use of Vitamins E and C improve nephrotoxicity induced by Colistin in rats. Saudi J Kidney Dis Transplant 29(3):545–553. https://doi.org/10.4103/1319-2442.235168

Article  Google Scholar 

Gulsen I et al (2016) Neuroprotective effects of thymoquinone on the hippocampus in a rat model of traumatic brain injury. World Neurosurgery 86:243–249. https://doi.org/10.1016/j.wneu.2015.09.052

Article  PubMed  Google Scholar 

Gurler M et al (2023) Protective effect of dexpanthenol against methotrexate-induced liver oxidative toxicity in rats. Drug Chem Toxicol 46(4):708–716. https://doi.org/10.1080/02688697.2020.1749984

Article  CAS  PubMed  Google Scholar 

Ince S et al (2013) The role of thymoquinone as antioxidant protection on oxidative stress induced by imidacloprid in male and female Swiss albino mice. Toxicol Environ Chem 95(2):318–329. https://doi.org/10.1080/02772248.2013.764672

Article  CAS  Google Scholar 

Isaev N-K, Genrikhs E-E, Stelmashook E-V (2023) Antioxidant thymoquinone and its potential in the treatment of neurological diseases. Antioxidants 12(2):433. https://doi.org/10.3390/antiox12020433

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang G-Z, Li J-C (2014) Protective effects of ginsenoside Rg1 against Colistin sulfate-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 34:167–172. https://doi.org/10.1007/s10571-013-9998-4

Article  CAS  PubMed  Google Scholar 

Karakuyu N-F, Ozmen O (2022) Dexpanthenol Inhibits Inflammation and Apoptosis in LPS-Induced Acute Lung Injury by Reducing Increased VCAM-1 and Caspase-3 Expressions in Rats. Kocatepe Vet J, 15(3);303–310. https://doi.org/10.30607/kvj.1101065

Lim L-M, et al (2010) Resurgence of Colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 30(12):1279–1291. https://doi.org/10.1592/phco.30.12.1279

Masaki H (2010) Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci 58(2):85–90. https://doi.org/10.1016/j.jdermsci.2010.03.003

Article  CAS  PubMed  Google Scholar 

Naghmouchi K et al (2013) Synergistic effect between Colistin and bacteriocins in controlling Gram-negative pathogens and their potential to reduce antibiotic toxicity in mammalian epithelial cells. Antimicrob Agents Chemother 57(6):2719–2725. https://doi.org/10.1128/aac.02328-12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nasrullah M-Z et al (2022) Omeprazole Prevents Colistin-Induced Nephrotoxicity in Rats: Emphasis on Oxidative Stress, Inflammation, Apoptosis and Colistin Accumulation in Kidneys. Pharmaceuticals 15(7):782. https://doi.org/10.3390/ph15070782

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reed M-D, Stern R-C, O’Riordan M-A, Blumer J-L (2001) The pharmacokinetics of Colistin in patients with cystic fibrosis. J Clin Pharmacol 41(6):645–654. https://doi.org/10.1177/00912700122010537

Article  CAS  PubMed  Google Scholar 

Wang D, Feng J-F, Zeng P, Yang Y-H, Luo J, Yang Y-W (2011) Total oxidant/antioxidant status in sera of patients with thyroid cancers. Endocr Relat Cancer 18(6):773–782. https://doi.org/10.1530/ERC-11-0230

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif