Acconcia F, Pallottini V, Marino M (2015) Molecular mechanisms of action of BPA. Dose-Response 13(4):1559325815610582. https://doi.org/10.1177/1559325815610582
Article PubMed PubMed Central CAS Google Scholar
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
Article PubMed CAS Google Scholar
Almeida S, Raposo A, Almeida-González M, Carrascosa C (2018) Bisphenol A: food exposure and impact on human health. Comprehensive Rev Food Sci Food Saf 17(6):1503–1517. https://doi.org/10.1111/1541-4337.12388
Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A (2006) The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect 114(1):106–112. https://doi.org/10.1289/ehp.8451
Article PubMed CAS Google Scholar
Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquié M, Gauthier BR, Nef S, Stefani E, Nadal A (2008) Pancreatic insulin content regulation by the estrogen receptor ER alpha. PloS One 3(4):e2069. https://doi.org/10.1371/journal.pone.0002069
Article PubMed PubMed Central CAS Google Scholar
Alonso-Magdalena P, Ropero AB, Soriano S, Quesada I, Nadal A (2010) Bisphenol-A: a new diabetogenic factor? Hormones (Athens, Greece) 9(2):118–126. https://doi.org/10.1007/BF03401277
Alonso-Magdalena P, Ropero AB, Soriano S, García-Arévalo M, Ripoll C, Fuentes E, Quesada I, Nadal Á (2012) Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol 355(2):201–207. https://doi.org/10.1016/j.mce.2011.12.012
Article PubMed CAS Google Scholar
Appleton DJ, Rand JS, Sunvold GD (2002) Plasma leptin concentrations are independently associated with insulin sensitivity in lean and overweight cats. J Feline Med Surg 4(2):83–93. https://doi.org/10.1053/jfms.2002.0166
Article PubMed PubMed Central CAS Google Scholar
Babiloni-Chust I, Dos Santos RS, Medina-Gali RM, Perez-Serna AA, Encinar JA, Martinez-Pinna J, Gustafsson JA, Marroqui L, Nadal A (2022) G protein-coupled estrogen receptor activation by bisphenol-A disrupts the protection from apoptosis conferred by the estrogen receptors ERα and ERβ in pancreatic beta cells. Environment Int 164:107250. https://doi.org/10.1016/j.envint.2022.107250
Banerjee O, Singh S, Saha I, Pal S, Banerjee M, Kundu S, Syamal AK, Maji BK, Mukherjee S (2022) Molecular dissection of cellular response of pancreatic islet cells to Bisphenol-A (BPA): a comprehensive review. Biochem Pharmacol 201:115068. https://doi.org/10.1016/j.bcp.2022.115068
Article PubMed CAS Google Scholar
Banerjee O, Singh S, Prasad SK, Bhattacharjee A, Seal T, Mandal J, Sinha S, Banerjee A, Maji BK, Mukherjee S (2024) Exploring aryl hydrocarbon receptor (AhR) as a target for Bisphenol-A (BPA)-induced pancreatic islet toxicity and impaired glucose homeostasis: protective efficacy of ethanol extract of Centella asiatica. Toxicol 500:153693. https://doi.org/10.1016/j.tox.2023.153693
Banerjee O, Singh S, Paul T, Maji BK, Mukherjee S (2024) Centella asiatica mitigates the detrimental effects of Bisphenol-A (BPA) on pancreatic islets. Sci Rep 14(1):8043. https://doi.org/10.1038/s41598-024-58545-2
Article PubMed PubMed Central CAS Google Scholar
Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH (2008) The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18(3):207–250. https://doi.org/10.1615/critreveukargeneexpr.v18.i3.20
Article PubMed PubMed Central CAS Google Scholar
Bolli A, Bulzomi P, Galluzzo P, Acconcia F, Marino M (2010) Bisphenol A impairs estradiol-induced protective effects against DLD-1 colon cancer cell growth. IUBMB life 62(9):684–687. https://doi.org/10.1002/iub.370
Article PubMed CAS Google Scholar
Caporossi L, Papaleo B (2015) Exposure to bisphenol a and gender differences: from rodents to humans evidences and hypothesis about the health effects. J Xenobiot 5(1):5264. https://doi.org/10.4081/xeno.2015.5264
Article PubMed PubMed Central Google Scholar
Carchia E, Porreca I, Almeida PJ, D’Angelo F, Cuomo D, Ceccarelli M, De Felice M, Mallardo Ambrosino C (2015) Evaluation of low doses BPA-induced perturbation of glycemia by toxicogenomics points to a primary role of pancreatic islets and to the mechanism of toxicity. Cell Death Dis 6(10):e1959. https://doi.org/10.1038/cddis.2015.319
Article PubMed PubMed Central CAS Google Scholar
Carmeci C, Thompson DA, Ring HZ, Francke U, Weigel RJ (1997) Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 45(3):607–617. https://doi.org/10.1006/geno.1997.4972
Article PubMed CAS Google Scholar
Chen S, Operaña T, Bonzo J, Nguyen N, Tukey RH (2005) ERK kinase inhibition stabilizes the aryl hydrocarbon receptor: implications for transcriptional activation and protein degradation. J Biol Chem 280(6):4350–4359. https://doi.org/10.1074/jbc.M411554200
Article PubMed CAS Google Scholar
Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F (2020) Potential mechanisms of Bisphenol A (BPA) contributing to human disease. Int J Mol Sci 21(16):5761. https://doi.org/10.3390/ijms21165761
Article PubMed PubMed Central CAS Google Scholar
Clarke J, Flatt PR, Barnett CR (1997) Cytochrome P450 1A-like proteins expressed in the islets of Langerhans and altered pancreatic beta-cell secretory responsiveness. Br J Pharmacol 121(3):389–394. https://doi.org/10.1038/sj.bjp.0701139
Article PubMed PubMed Central CAS Google Scholar
Cox MB, Miller CA(3rd) (2004) Cooperation of heat shock protein 90 and p23 in aryl hydrocarbon receptor signaling. Cell Stress Chaperones 9(1): 4–20. https://doi.org/10.1379/460.1
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77. https://doi.org/10.1016/0003-9861(59)90090-6
Article PubMed CAS Google Scholar
Erren TC (2022) Bisphenol A and cancer: a prelude to challenging epidemiology. Int Arch Occup Environ Health 95(1):313–314. https://doi.org/10.1007/s00420-021-01752-5
Grishanova AY, Perepechaeva ML (2022) Aryl hydrocarbon receptor in oxidative stress as a double agent and its biological and therapeutic significance. Int J Mol Sci 23:6719. https://doi.org/10.3390/ijms23126719
Article PubMed PubMed Central CAS Google Scholar
Guarnieri T, Abruzzo PM, Bolotta A (2020) More than a cell biosensor: aryl hydrocarbon receptor at the intersection of physiology and inflammation. Am J Physiol: Cell Physiol 318(6):C1078–C1082. https://doi.org/10.1152/ajpcell.00493.2019
Article PubMed CAS Google Scholar
Haffner SM, Miettinen H, Stern MP (1997) The homeostasis model in the San Antonio Heart Study. Diabetes Care 20(7):1087–1092. https://doi.org/10.2337/diacare.20.7.1087
Article PubMed CAS Google Scholar
Hahladakis JN, Iacovidou E, Gerassimidou S (2023) An overview of the occurrence, fate, and human risks of the bisphenol-A present in plastic materials, components, and products. Integr Environ Assess Manag 19(1):45–62. https://doi.org/10.1002/ieam.4611
Article PubMed CAS Google Scholar
Hsu CN, Lin YJ, Tain YL (2019) Maternal exposure to Bisphenol A combined with high-fat diet-induced programmed hypertension in adult male rat offspring: effects of resveratrol. Int J Mol Sci 20(18):4382. https://doi.org/10.3390/ijms20184382
Comments (0)