Spontaneous Calcium Transients Recorded from Striatal Astrocytes in a Preclinical Model of Autism

Schneider T, Przewłocki R (2005) Behavioral alterations in rats prenatally to valproic acid: animal model of autism. Neuropsychopharmacology 30:80–89. https://doi.org/10.1038/sj.npp.1300518

Article  CAS  PubMed  Google Scholar 

Roullet FI, Wollaston L, deCatanzaro D, Foster JA (2010) Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid. Neuroscience 170:514–522. 10.1016/j. neuroscience.2010.06.069

Article  CAS  PubMed  Google Scholar 

Thabault M, Turpin V, Maisterrena A, Jaber M, Egloff M, Galvan L (2022) Cerebellar and striatal implications in Autism Spectrum disorders: from clinical observations to animal models. Int J Mol Sci 23:2294. https://doi.org/10.3390/ijms23

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuo HY, Liu FC (2017) Valproic acid induces aberrant development of striatal compartments and corticostriatal pathways in a mouse model of autism spectrum disorder. FASEB J 31:4458–4471. https://doi.org/10.1096/fj.201700054R

Article  CAS  PubMed  Google Scholar 

Khakh BS (2019) Astrocyte-neuron interactions in the striatum: insights on identity, form, and function. Trends Neurosci 42:617–630. https://doi.org/10.1016/j.tins.2019.06.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martín R, Bajo-Grañeras R, Moratalla R, Perea G, Araque A (2015) Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349:730–734. https://doi.org/10.1126/science.aaa7945

Article  CAS  PubMed  Google Scholar 

Yu X, Taylor AMW, Nagai J, Golshani P, Evans CJ, Coppola G et al (2018) Reducing astrocyte Calcium Signaling. Vivo Alters Striatal Microcircuits Causes Repetitive Behav Neuron 99:1170–1187e9. https://doi.org/10.1016/j.neuron.2018.08.015

Article  CAS  Google Scholar 

Wang Q, Kong Y, Wu DY, Liu JH, Jie W, You QL et al (2021) Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors in mice. Nat Commun 12:3321. https://doi.org/10.1038/s41467-021-23843-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK et al (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86. https://doi.org/10.1002/1098-1136(20010101)33:1%3C72::AID-GLIA1007%3E3.0.CO;2-A

Article  CAS  PubMed  Google Scholar 

Varman DR, Soria-Ortíz MB, Martínez-Torres A, Reyes-Haro D (2018) GABAρ3 expression in lobule X of the cerebellum is reduced in the valproate model of autism. Neurosci Lett 687:158–163. https://doi.org/10.1016/j.neulet.2018.09.042

Article  CAS  PubMed  Google Scholar 

Kim KC, Kim P, Go HS, Choi CS, Park JH, Kim HJ et al (2013) Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem 124:832–843. https://doi.org/10.1111/jnc.12147

Article  CAS  PubMed  Google Scholar 

Perez-Pouchoulen M, Miquel M, Saft P, Brug B, Toledo R, Hernandez ME et al (2016) Prenatal exposure to sodium valproate alters androgen receptor expression in the developing cerebellum in a region and age specific manner in male and female rats. Int J Dev Neurosci 53:46–52. https://doi.org/10.1016/j.ijdevneu.2016.07.001

Article  CAS  PubMed  Google Scholar 

Melancia F, Schiavi S, Servadio M, Cartocci V, Campolongo P, Palmery M et al (2018) Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br J Pharmacol 175:3699–3712. https://doi.org/10.1111/bph.14435

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(76):248–254. https://doi.org/10.1016/0003-2697

Article  CAS  PubMed  Google Scholar 

Schnell C, Shahmoradi A, Wichert SP, Mayerl S, Hagos Y, Heuer H, Rossner MJ, Hülsmann S (2015) The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes. Brain Struct Funct 220:193–203. https://doi.org/10.1007/s00429-013-0645-0

Article  CAS  PubMed  Google Scholar 

Nimmerjahn A, Kirchhoff F, Kerr JND, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1:31–37. https://doi.org/10.1038/nmeth706

Article  CAS  PubMed  Google Scholar 

Hoogland TM, Kuhn B, Göbel W, Huang W, Nakai J, Helmchen F, Flint J, Wang SS (2009) Radially expanding transglial calcium waves in the intact cerebellum. Proc Natl Acad Sci U S A 106:3496–3501. https://doi.org/10.1073/pnas.0809269106

Article  PubMed  PubMed Central  Google Scholar 

Reyes-Haro D, González-González MA, Pétriz A, Rosas-Arellano A et al (2013) γ-Aminobutyric acid-ρ expression in ependymal glial cells of the mouse cerebellum. J Neurosci Res 91:527–534. https://doi.org/10.1002/jnr.23183

Article  CAS  PubMed  Google Scholar 

Reyes-Haro D, Hernández-Santos JA, Miledi R, Martínez-Torres A (2017) GABAρ selective antagonist TPMPA partially inhibits GABA-mediated currents recorded from neurones and astrocytes in mouse striatum. Neuropharmacology 113:407–415. https://doi.org/10.1016/j.neuropharm.2016.10.024

Article  CAS  PubMed  Google Scholar 

Soria-Ortiz MB, Reyes-Ortega P, Martínez-Torres A, Reyes-Haro D (2021) A functional signature in the developing cerebellum: evidence from a preclinical model of Autism. Front Cell Dev Biol 9:727079. https://doi.org/10.3389/fcell.2021.727079

Article  PubMed  PubMed Central  Google Scholar 

Reyes-Haro D, Müller J, Boresch M, Pivneva T, Benedetti B, Scheller A et al (2010) Neuron-astrocyte interactions in the medial nucleus of the trapezoid body. J Gen Physiol 135:583–594. https://doi.org/10.1085/jgp.200910354

Article  CAS  PubMed  PubMed Central  Google Scholar 

Labrada-Moncada FE, Martínez-Torres A, Reyes-Haro D (2020) GABAA receptors are selectively expressed in NG2 glia of the cerebellar white matter. Neuroscience 433:132–143. https://doi.org/10.1016/j.neuroscience.2020.03.003

Article  CAS  PubMed  Google Scholar 

Lingawi NW, Balleine BW (2012) Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits. J Neurosci 32:1073–1081. https://doi.org/10.1523/JNEUROSCI.4806-11.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuccillo MV (2016) Striatal Circuits as a common node for Autism Pathophysiology. Front Neurosci 10:27. https://doi.org/10.3389/fnins.2016.00027

Article  PubMed  PubMed Central  Google Scholar 

Petrelli F, Pucci L, Bezzi P (2016) Astrocytes and Microglia and their potential link with Autism Spectrum disorders. Front Cell Neurosci 10:21. https://doi.org/10.3389/fncel.2016.00021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mony TJ, Lee JW, Kim SS, Chun W, Lee HJ (2018) Early postnatal valproic acid exposure increase the protein level of astrocyte markers in Frontal Cortex of Rat. Clin Psychopharmacol Neurosci 16:214–217. https://doi.org/10.9758/cpn.2018.16.2.214

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosas-Arellano A, Machuca-Parra AI, Reyes-Haro D, Miledi R, Martínez-Torres A (2012) Expression of GABAρ receptors in the neostriatum: localization in aspiny, medium spiny neurons and GFAP-positive cells. J Neurochem 122:900–910.

Comments (0)

No login
gif