Marwaha S, Palmer E, Suppes T et al (2023) Novel and emerging treatments for major depression. Lancet 401(10371):141–153. https://doi.org/10.1016/S0140-6736(22)02080-3
Article CAS PubMed Google Scholar
Rafeyan R, Papakostas GI, Jackson WC et al (2020) Inadequate response to treatment in major depressive disorder: augmentation and adjunctive strategies. J Clin Psychiat 81(3). https://doi.org/10.4088/JCP.OT19037BR3
Haddad PM, Talbot PS, Anderson IM et al (2015) Managing inadequate antidepressant response in depressive illness. Brit Med Bull 115(1):183–201. https://doi.org/10.1093/bmb/ldv034
Article CAS PubMed Google Scholar
Olivier B, Olivier JDA (2024) Efficacy, Safety, and tolerability of Psychedelics in Treatment-Resistant Depression (TRD). Adv Exp Med Biol 1456:49–66. https://doi.org/10.1007/978-981-97-4402-2_3
Kovich H, Kim W, Quaste AM (2023) Pharmacologic treatment of Depression. Am Fam Physician 107(2):173–181
Zhu W, Cao FS, Feng J et al (2017) NLRP3 inflammasome activation contributes to long-term behavioral alterations in mice injected with lipopolysaccharide. Neuroscience 343:77–84. https://doi.org/10.1016/j.neuroscience.2016.11.037
Article CAS PubMed Google Scholar
Shao BZ, Cao Q, Liu C (2018) Targeting NLRP3 inflammasome in the treatment of CNS diseases. Front Mol Neurosci 11:320. https://doi.org/10.3389/fnmol.2018.00320
Article CAS PubMed PubMed Central Google Scholar
Pandey GN, Zhang H, Sharma A et al (2021) Innate immunity receptors in depression and suicide: upregulated NOD-like receptors containing pyrin (NLRPs) and hyperactive inflammasomes in the postmortem brains of people who were depressed and died by suicide. J Psychiatry Neurosci 46(5):E538–E547. https://doi.org/10.1503/jpn.210016
Article PubMed PubMed Central Google Scholar
Yang XJ, Zhao BC, Li J et al (2022) Serum NLRP3 inflammasome and BDNF: potential biomarkers differentiating reactive and endogenous depression. Front Psychiatry 13:814828. https://doi.org/10.3389/fpsyt.2022.814828
Article PubMed PubMed Central Google Scholar
Liang L, Wang H, Hu Y et al (2022) Oridonin relieves depressive-like behaviors by inhibiting neuroinflammation and autophagy impairment in rats subjected to chronic unpredictable mild stress. Phytother Res 36(8):3335–3351. https://doi.org/10.1002/ptr.7518
Article CAS PubMed Google Scholar
Wang XH, Dai C, Wang J et al (2021) Therapeutic effect of neohesperidin on TNF-alpha-stimulated human rheumatoid arthritis fibroblast-like synoviocytes. Chin J Nat Med 19(10):741–749. https://doi.org/10.1016/S1875-5364(21)60107-3
Article CAS PubMed Google Scholar
Li A, Zhang X, Luo Q (2021) Neohesperidin alleviated pathological damage and immunological imbalance in rat myocardial ischemia-reperfusion injury via inactivation of JNK and NF-kappaB p65. Biosci Biotechnol Biochem 85(2):251–261. https://doi.org/10.1093/bbb/zbaa064
Wang JJ, Cui P (2013) Neohesperidin attenuates cerebral ischemia-reperfusion injury via inhibiting the apoptotic pathway and activating the Akt/Nrf2/HO-1 pathway. J Asian Nat Prod Res 15(9):1023–1037. https://doi.org/10.1080/10286020.2013.827176
Article CAS PubMed Google Scholar
Chakraborty S, Rakshit J, Bandyopadhyay J et al (2021) Multi-target inhibition ability of neohesperidin dictates its neuroprotective activity: implication in Alzheimer’s disease therapeutics. Int J Biol Macromol 176:315–324. https://doi.org/10.1016/j.ijbiomac.2021.02.073
Article CAS PubMed Google Scholar
Zhang X, Han L, Liu J et al (2018) Pharmacokinetic study of 7 compounds following oral administration of Fructus Aurantii to depressive rats. Front Pharmacol 9:131. https://doi.org/10.3389/fphar.2018.00131
Article CAS PubMed PubMed Central Google Scholar
Deyama S, Aoki S, Sugie R et al (2024) Neohesperidin exerts antidepressant-like effect via the mechanistic target of rapamycin complex 1 in the medial prefrontal cortex in male mice. J Pharmacol Sci 156(2):82–85. https://doi.org/10.1016/j.jphs.2024.07.010
Article CAS PubMed Google Scholar
Yang Q, Luo L, Sun T et al (2020) Chronic minocycline treatment exerts antidepressant effect, inhibits neuroinflammation, and modulates gut microbiota in mice. Psychopharmacology 237(10):3201–3213. https://doi.org/10.1007/s00213-020-05604-x
Article CAS PubMed Google Scholar
Song AQ, Gao B, Fan JJ et al (2020) NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice. J Neuroinflammation 17(1):178. https://doi.org/10.1186/s12974-020-01848-8
Article CAS PubMed PubMed Central Google Scholar
Xia CY, Guo YX, Lian WW et al (2023) The NLRP3 inflammasome in depression: potential mechanisms and therapies. Pharmacol Res 187:106625. https://doi.org/10.1016/j.phrs.2022.106625
Article CAS PubMed Google Scholar
Lu W, Shi Y, Wang R et al (2021) Antioxidant activity and healthy benefits of natural pigments in fruits: a review. Int J Mol Sci 22(9). https://doi.org/10.3390/ijms22094945
Antoniuk S, Bijata M, Ponimaskin E et al (2019) Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav R 99:101–116. https://doi.org/10.1016/j.neubiorev.2018.12.002
Ding F, Wu J, Liu C et al (2020) Effect of Xiaoyaosan on Colon morphology and intestinal permeability in rats with chronic unpredictable mild stress. Front Pharmacol 11:1069. https://doi.org/10.3389/fphar.2020.01069
Article CAS PubMed PubMed Central Google Scholar
Luo L, Sun T, Yang L et al (2020) Scopoletin ameliorates anxiety-like behaviors in complete Freund’s adjuvant-induced mouse model. Mol Brain 13(1):15. https://doi.org/10.1186/s13041-020-0560-2
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Hui Y, Liu F et al (2022) Neohesperidin protects angiotensin II-Induced hypertension and vascular remodeling. Front Pharmacol 13:890202. https://doi.org/10.3389/fphar.2022.890202
Article CAS PubMed PubMed Central Google Scholar
Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A et al (2018) Hesperidin attenuates depression-related symptoms in mice with mild traumatic brain injury. Life Sci 213:198–205. https://doi.org/10.1016/j.lfs.2018.10.040
Article CAS PubMed Google Scholar
Muhammad T, Ikram M, Ullah R et al (2019) Hesperetin, a Citrus Flavonoid, attenuates LPS-Induced Neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients 11(3):648. https://doi.org/10.3390/nu11030648
Article CAS PubMed PubMed Central Google Scholar
Bhatt S, Nagappa AN, Patil CR (2020) Role of oxidative stress in depression. Drug Discov Today 25(7):1270–1276. https://doi.org/10.1016/j.drudis.2020.05.001
Article CAS PubMed Google Scholar
Duman RS, Voleti B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35(1):47–56. https://doi.org/10.1016/j.tins.2011.11.004
Article CAS PubMed PubMed Central Google Scholar
Liu Z, Zou Y, He M et al (2022) Hydroxysafflor yellow A can improve depressive behavior by inhibiting hippocampal inflammation and oxidative stress through regulating HPA axis. J Biosci 47:7
Article CAS PubMed Google Scholar
Harsanyi S, Kupcova I, Danisovic L et al (2022) Selected biomarkers of Depression: what are the effects of cytokines and inflammation? Int J Mol Sci 24(1):578.
Comments (0)