RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential

Hall A. Rho family GTPases. Biochem Soc Trans. 2012;40(6):1378–82.

Article  CAS  PubMed  Google Scholar 

Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J. 2000;348(Pt 2):241–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwartz M. Rho signalling at a glance. J Cell Sci. 2004;117(Pt 23):5457–8.

Article  CAS  PubMed  Google Scholar 

Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer. 2002;2(2):133–42.

Article  PubMed  Google Scholar 

Svensmark JH, Brakebusch C. Rho GTPases in cancer: friend or foe? Oncogene. 2019;38(50):7447–56.

Article  CAS  PubMed  Google Scholar 

Haga RB, Ridley AJ. Rho GTPases: regulation and roles in cancer cell biology. Small GTPases. 2016;7(4):207–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kataoka K, Ogawa S. Variegated RHOA mutations in human cancers. Exp Hematol. 2016;44(12):1123–9.

Article  CAS  PubMed  Google Scholar 

Chen W, Delongchamps NB, Mao K, Beuvon F, Peyromaure M, Liu Z, Dinh-Xuan AT. High RhoA expression at the tumor front in clinically localized prostate cancer and association with poor tumor differentiation. Oncol Lett. 2016;11(2):1375–81.

Article  CAS  PubMed  Google Scholar 

Jeong D, Park S, Kim H, Kim CJ, Ahn TS, Bae SB, Kim HJ, Kim TH, Im J, Lee MS, et al. RhoA is associated with invasion and poor prognosis in colorectal cancer. Int J Oncol. 2016;48(2):714–22.

Article  CAS  PubMed  Google Scholar 

Xie S, Zhu M, Lv G, Geng Y, Chen G, Ma J, Wang G. Overexpression of Ras homologous C (RhoC) induces malignant transformation of hepatocytes in vitro and in nude mouse xenografts. PLoS ONE. 2013;8(1):e54493.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawata H, Kamiakito T, Omoto Y, Miyazaki C, Hozumi Y, Tanaka A. RhoC upregulation is correlated with reduced E-cadherin in human breast cancer specimens after chemotherapy and in human breast cancer MCF-7 cells. Horm cancer. 2014;5(6):414–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gou WF, Zhao Y, Lu H, Yang XF, Xiu YL, Zhao S, Liu JM, Zhu ZT, Sun HZ, Liu YP, et al. The role of RhoC in epithelial-to-mesenchymal transition of ovarian carcinoma cells. BMC Cancer. 2014;14:477.

Article  PubMed  PubMed Central  Google Scholar 

He X, Qian Y, Cai H, Yang S, Cai J, Wang Z. RhoC is essential in TGF-β1 induced epithelial-mesenchymal transition in cervical cancer cells. Oncol Lett. 2015;10(2):985–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang M, Prendergast GC. RhoB in cancer suppression. Histol Histopathol. 2006;21(2):213–8.

CAS  PubMed  Google Scholar 

Eckenstaler R, Hauke M, Benndorf RA. A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol. 2022;206:115321.

Article  CAS  PubMed  Google Scholar 

Dvorsky R, Ahmadian MR. Always look on the bright site of rho: structural implications for a conserved intermolecular interface. EMBO Rep. 2004;5(12):1130–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem. 2011;80:943–71.

Article  CAS  PubMed  Google Scholar 

Kumawat A, Chakrabarty S, Kulkarni K. Nucleotide dependent switching in rho GTPase: conformational heterogeneity and competing molecular interactions. Sci Rep. 2017;7:45829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zong H, Kaibuchi K, Quilliam LA. The insert region of RhoA is essential for rho kinase activation and cellular transformation. Mol Cell Biol. 2001;21(16):5287–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dvorsky R, Blumenstein L, Vetter IR, Ahmadian MR. Structural insights into the interaction of ROCKI with the switch regions of RhoA. J Biol Chem. 2004;279(8):7098–104.

Article  CAS  PubMed  Google Scholar 

Roberts PJ, Mitin N, Keller PJ, Chenette EJ, Madigan JP, Currin RO, Cox AD, Wilson O, Kirschmeier P, Der CJ. Rho family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem. 2008;283(37):25150–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kinsella BT, Erdman RA, Maltese WA. Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid. Proc Natl Acad Sci USA. 1991;88(20):8934–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samuel F, Hynds DL. RHO GTPase signaling for axon extension: is prenylation important? Mol Neurobiol. 2010;42(2):133–42.

Article  CAS  PubMed  Google Scholar 

Backlund PS Jr. Post-translational processing of RhoA. Carboxyl methylation of the carboxyl-terminal prenylcysteine increases the half-life of Rhoa. J Biol Chem. 1997;272(52):33175–80.

Article  CAS  PubMed  Google Scholar 

Lebowitz PF, Casey PJ, Prendergast GC, Thissen JA. Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J Biol Chem. 1997;272(25):15591–4.

Article  CAS  PubMed  Google Scholar 

Du W, Lebowitz PF, Prendergast GC. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol. 1999;19(3):1831–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baron R, Fourcade E, Lajoie-Mazenc I, Allal C, Couderc B, Barbaras R, Favre G, Faye JC, Pradines A. RhoB prenylation is driven by the three carboxyl-terminal amino acids of the protein: evidenced in vivo by an anti-farnesyl cysteine antibody. Proc Natl Acad Sci USA. 2000;97(21):11626–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt SI, Blaabjerg M, Freude K, Meyer M. RhoA signaling in neurodegenerative diseases. Cells 2022, 11(9).

Sawada N, Itoh H, Yamashita J, Doi K, Inoue M, Masatsugu K, Fukunaga Y, Sakaguchi S, Sone M, Yamahara K, et al. cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem Biophys Res Commun. 2001;280(3):798–805.

Article  CAS  PubMed  Google Scholar 

Guilluy C, Rolli-Derkinderen M, Loufrani L, Bourgé A, Henrion D, Sabourin L, Loirand G, Pacaud P. Ste20-related kinase SLK phosphorylates Ser188 of RhoA to induce vasodilation in response to angiotensin II type 2 receptor activation. Circul Res. 2008;102(10):1265–74.

Article  CAS  Google Scholar 

Gayard M, Guilluy C, Rousselle A, Viollet B, Henrion D, Pacaud P, Loirand G, Rolli-Derkinderen M. AMPK alpha 1-induced RhoA phosphorylation mediates vasoprotective effect of estradiol. Arterioscler Thromb Vasc Biol. 2011;31(11):2634–42.

Article 

Comments (0)

No login
gif