Kuhn, M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol. Rev. 96, 751–804 (2016).
Article CAS PubMed Google Scholar
Pandey, K. N. Molecular signaling mechanisms and function of natriuretic peptide receptor-a in the pathophysiology of cardiovascular homeostasis. Front Physiol. 12, 693099 (2021).
Article PubMed PubMed Central Google Scholar
Maack, T. Receptors of atrial natriuretic factor. Annu. Rev. Physiol. 54, 11–27 (1992).
Article CAS PubMed Google Scholar
John, S. W. et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267, 679–681 (1995).
Article CAS PubMed Google Scholar
van den Akker, F. et al. Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 406, 101–104 (2000).
He, X., Chow, D., Martick, M. M. & Garcia, K. C. Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 293, 1657–1662 (2001).
Ogawa, H., Qiu, Y., Ogata, C. M. & Misono, K. S. Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J. Biol. Chem. 279, 28625–28631 (2004).
Article CAS PubMed Google Scholar
He, X. L., Dukkipati, A. & Garcia, K. C. Structural determinants of natriuretic peptide receptor specificity and degeneracy. J. Mol. Biol. 361, 698–714 (2006).
Article CAS PubMed Google Scholar
Misono, K. S. Atrial natriuretic factor binding to its receptor is dependent on chloride concentration: A possible feedback-control mechanism in renal salt regulation. Circ. Res. 86, 1135–1139 (2000).
Article CAS PubMed Google Scholar
Koller, K. J., Lipari, M. T. & Goeddel, D. V. Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J. Biol. Chem. 268, 5997–6003 (1993).
Article CAS PubMed Google Scholar
Ramamurthy, V. et al. Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity. J. Biol. Chem. 276, 26218–26229 (2001).
Article CAS PubMed Google Scholar
Kelsell, R. E. et al. Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum. Mol. Genet 7, 1179–1184 (1998).
Article CAS PubMed Google Scholar
Dharmaraj, S. R. et al. Mutational analysis and clinical correlation in Leber congenital amaurosis. Ophthalmic Genet 21, 135–150 (2000).
Article CAS PubMed Google Scholar
Zhao, X. et al. A novel GUCY2D mutation in a Chinese family with dominant cone dystrophy. Mol. Vis. 19, 1039–1046 (2013).
CAS PubMed PubMed Central Google Scholar
Wilson, E. M. & Chinkers, M. Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34, 4696–4701 (1995).
Article CAS PubMed Google Scholar
Kleinboelting, S., van den Heuvel, J. & Steegborn, C. Structural analysis of human soluble adenylyl cyclase and crystal structures of its nucleotide complexes-implications for cyclase catalysis and evolution. FEBS J. 281, 4151–4164 (2014).
Article CAS PubMed Google Scholar
Sinha, S. C. & Sprang, S. R. Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases. Rev. Physiol., Biochem. Pharmacol. 157, 105–140 (2006).
Article CAS PubMed Google Scholar
Steegborn, C. Structure, mechanism, and regulation of soluble adenylyl cyclases - similarities and differences to transmembrane adenylyl cyclases. Biochim. Biophys. Acta 1842, 2535–2547 (2014).
Article CAS PubMed Google Scholar
Kang, Y., Liu, R., Wu, J. X. & Chen, L. Structural insights into the mechanism of human soluble guanylate cyclase. Nature 574, 206–210 (2019).
Article CAS PubMed Google Scholar
Horst, B. G. et al. Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy. Elife 8, https://doi.org/10.7554/eLife.50634 (2019).
Tesmer, J. J., Sunahara, R. K., Gilman, A. G. & Sprang, S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS [see comments]. Science 278, 1907–1916 (1997).
Article CAS PubMed Google Scholar
Zhang, G., Liu, Y., Ruoho, A. E. & Hurley, J. H. Structure of the adenylyl cyclase catalytic core. Nature 386, 247–253 (1997).
Article CAS PubMed Google Scholar
Tesmer, J. J. et al. Two-metal-Ion catalysis in adenylyl cyclase. Science 285, 756–760 (1999).
Article CAS PubMed Google Scholar
Qi, C., Sorrentino, S., Medalia, O. & Korkhov, V. M. The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science 364, 389–394 (2019).
Article CAS PubMed Google Scholar
Tews, I. et al. The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308, 1020–1023 (2005).
Article CAS PubMed Google Scholar
Seeger, F. et al. Interfacial residues promote an optimal alignment of the catalytic center in human soluble guanylate cyclase: heterodimerization is required but not sufficient for activity. Biochemistry 53, 2153–2165 (2014).
Article CAS PubMed Google Scholar
Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184, 5728–5739 e5716 (2021).
Article CAS PubMed PubMed Central Google Scholar
Tesmer, J. J. et al. Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry 39, 14464–14471 (2000).
Article CAS PubMed Google Scholar
Steegborn, C., Litvin, T. N., Levin, L. R., Buck, J. & Wu, H. Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat. Struct. Mol. Biol. 12, 32–37 (2005).
Article CAS PubMed Google Scholar
Joubert, S., McNicoll, N. & De Lean, A. Biochemical and pharmacological characterization of P-site inhibitors on homodimeric guanylyl cyclase domain from natriuretic peptide receptor-A. Biochem. Pharmacol. 73, 954–963 (2007).
Article CAS PubMed Google Scholar
Chinkers, M. & Garbers, D. L. The protein kinase domain of the ANP receptor is required for signaling. Science 245, 1392–1394 (1989).
Article CAS PubMed Google Scholar
Taylor, S. S. et al. From structure to the dynamic regulation of a molecular switch: A journey over 3 decades. J. Biol. Chem. 296, 100746 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kurose, H., Inagami, T. & Ui, M. Participation of adenosine 5’-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett. 219, 375–379 (1987).
Comments (0)