Architecture and activation of single-pass transmembrane receptor guanylyl cyclase

Kuhn, M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol. Rev. 96, 751–804 (2016).

Article  CAS  PubMed  Google Scholar 

Pandey, K. N. Molecular signaling mechanisms and function of natriuretic peptide receptor-a in the pathophysiology of cardiovascular homeostasis. Front Physiol. 12, 693099 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Maack, T. Receptors of atrial natriuretic factor. Annu. Rev. Physiol. 54, 11–27 (1992).

Article  CAS  PubMed  Google Scholar 

John, S. W. et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267, 679–681 (1995).

Article  CAS  PubMed  Google Scholar 

van den Akker, F. et al. Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 406, 101–104 (2000).

Article  PubMed  Google Scholar 

He, X., Chow, D., Martick, M. M. & Garcia, K. C. Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 293, 1657–1662 (2001).

Article  CAS  Google Scholar 

Ogawa, H., Qiu, Y., Ogata, C. M. & Misono, K. S. Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J. Biol. Chem. 279, 28625–28631 (2004).

Article  CAS  PubMed  Google Scholar 

He, X. L., Dukkipati, A. & Garcia, K. C. Structural determinants of natriuretic peptide receptor specificity and degeneracy. J. Mol. Biol. 361, 698–714 (2006).

Article  CAS  PubMed  Google Scholar 

Misono, K. S. Atrial natriuretic factor binding to its receptor is dependent on chloride concentration: A possible feedback-control mechanism in renal salt regulation. Circ. Res. 86, 1135–1139 (2000).

Article  CAS  PubMed  Google Scholar 

Koller, K. J., Lipari, M. T. & Goeddel, D. V. Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J. Biol. Chem. 268, 5997–6003 (1993).

Article  CAS  PubMed  Google Scholar 

Ramamurthy, V. et al. Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity. J. Biol. Chem. 276, 26218–26229 (2001).

Article  CAS  PubMed  Google Scholar 

Kelsell, R. E. et al. Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum. Mol. Genet 7, 1179–1184 (1998).

Article  CAS  PubMed  Google Scholar 

Dharmaraj, S. R. et al. Mutational analysis and clinical correlation in Leber congenital amaurosis. Ophthalmic Genet 21, 135–150 (2000).

Article  CAS  PubMed  Google Scholar 

Zhao, X. et al. A novel GUCY2D mutation in a Chinese family with dominant cone dystrophy. Mol. Vis. 19, 1039–1046 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Wilson, E. M. & Chinkers, M. Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34, 4696–4701 (1995).

Article  CAS  PubMed  Google Scholar 

Kleinboelting, S., van den Heuvel, J. & Steegborn, C. Structural analysis of human soluble adenylyl cyclase and crystal structures of its nucleotide complexes-implications for cyclase catalysis and evolution. FEBS J. 281, 4151–4164 (2014).

Article  CAS  PubMed  Google Scholar 

Sinha, S. C. & Sprang, S. R. Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases. Rev. Physiol., Biochem. Pharmacol. 157, 105–140 (2006).

Article  CAS  PubMed  Google Scholar 

Steegborn, C. Structure, mechanism, and regulation of soluble adenylyl cyclases - similarities and differences to transmembrane adenylyl cyclases. Biochim. Biophys. Acta 1842, 2535–2547 (2014).

Article  CAS  PubMed  Google Scholar 

Kang, Y., Liu, R., Wu, J. X. & Chen, L. Structural insights into the mechanism of human soluble guanylate cyclase. Nature 574, 206–210 (2019).

Article  CAS  PubMed  Google Scholar 

Horst, B. G. et al. Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy. Elife 8, https://doi.org/10.7554/eLife.50634 (2019).

Tesmer, J. J., Sunahara, R. K., Gilman, A. G. & Sprang, S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS [see comments]. Science 278, 1907–1916 (1997).

Article  CAS  PubMed  Google Scholar 

Zhang, G., Liu, Y., Ruoho, A. E. & Hurley, J. H. Structure of the adenylyl cyclase catalytic core. Nature 386, 247–253 (1997).

Article  CAS  PubMed  Google Scholar 

Tesmer, J. J. et al. Two-metal-Ion catalysis in adenylyl cyclase. Science 285, 756–760 (1999).

Article  CAS  PubMed  Google Scholar 

Qi, C., Sorrentino, S., Medalia, O. & Korkhov, V. M. The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science 364, 389–394 (2019).

Article  CAS  PubMed  Google Scholar 

Tews, I. et al. The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308, 1020–1023 (2005).

Article  CAS  PubMed  Google Scholar 

Seeger, F. et al. Interfacial residues promote an optimal alignment of the catalytic center in human soluble guanylate cyclase: heterodimerization is required but not sufficient for activity. Biochemistry 53, 2153–2165 (2014).

Article  CAS  PubMed  Google Scholar 

Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184, 5728–5739 e5716 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tesmer, J. J. et al. Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry 39, 14464–14471 (2000).

Article  CAS  PubMed  Google Scholar 

Steegborn, C., Litvin, T. N., Levin, L. R., Buck, J. & Wu, H. Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat. Struct. Mol. Biol. 12, 32–37 (2005).

Article  CAS  PubMed  Google Scholar 

Joubert, S., McNicoll, N. & De Lean, A. Biochemical and pharmacological characterization of P-site inhibitors on homodimeric guanylyl cyclase domain from natriuretic peptide receptor-A. Biochem. Pharmacol. 73, 954–963 (2007).

Article  CAS  PubMed  Google Scholar 

Chinkers, M. & Garbers, D. L. The protein kinase domain of the ANP receptor is required for signaling. Science 245, 1392–1394 (1989).

Article  CAS  PubMed  Google Scholar 

Taylor, S. S. et al. From structure to the dynamic regulation of a molecular switch: A journey over 3 decades. J. Biol. Chem. 296, 100746 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurose, H., Inagami, T. & Ui, M. Participation of adenosine 5’-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett. 219, 375–379 (1987).

Article 

Comments (0)

No login
gif