Baulac M, De Grissac N, Hasboun D, Oppenheim C, Adam C, Arzimanoglou A, Semah F, Lehéricy S, Clémenceau S, Berger B (1998) Hippocampal developmental changes in patients with partial epilepsy: magnetic resonance imaging and clinical aspects. Ann Neurol 44:223–233. https://doi.org/10.1002/ana.410440213
Article CAS PubMed Google Scholar
Löscher W, Potschka H, Sisodiya SM, Vezzani A (2020) Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev 72:606–638. https://doi.org/10.1124/pr.120.019539
Article CAS PubMed PubMed Central Google Scholar
Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, Hesdorffer DC, Hauser WA, Kazis L, Kobau R et al (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52:2–26. https://doi.org/10.1111/j.1528-1167.2011.03121.x
Article CAS PubMed Google Scholar
French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, Spencer DD (1993) Characteristics of medial temporal lobe epilepsy. I. results of history and physical examination. Ann Neurol 34:774–780. https://doi.org/10.1002/ana.410340604
Article CAS PubMed Google Scholar
Seinfeld S, Goodkin HP, Shinnar S (2016) Status epilepticus. Cold Spring Harb Perspect Med 6:a022830. https://doi.org/10.1101/cshperspect.a022830
Article PubMed PubMed Central Google Scholar
Leitinger M, Beniczky S, Rohracher A, Gardella E, Kalss G, Qerama E, Höfler J, Hess Lindberg-Larsen A, Kuchukhidze G, Dobesberger J et al (2015) Salzburg consensus criteria for non-convulsive status epilepticus—approach to clinical application. Epilepsy Behav 49:158–163. https://doi.org/10.1016/j.yebeh.2015.05.007
Article CAS PubMed Google Scholar
Sloviter RS (2008) Hippocampal epileptogenesis in animal models of mesial temporal lobe epilepsy with hippocampal sclerosis: the importance of the “latent period” and other concepts. Epilepsia 49:85–92. https://doi.org/10.1111/j.1528-1167.2008.01931.x
Henning O, Heuser K, Larsen VS, Kyte EB, Kostov H, Marthinsen PB, Egge A, Alfstad KÅ, Nakken KO (2023) Temporal lobe epilepsy. Tidsskriftet. https://doi.org/10.4045/tidsskr.22.0369
Blumcke I, Cross JH, Spreafico R (2013) The international consensus classification for hippocampal sclerosis: an important step towards accurate prognosis. The Lancet Neurology 12:844–846. https://doi.org/10.1016/S1474-4422(13)70175-3
Maizuliana H, Usui N, Terada K, Kondo A, Inoue Y (2020) Clinical, semiological, electroencephalographic, and neuropsychological features of “pure” neocortical temporal lobe epilepsy. Epileptic Disord 22:55–65. https://doi.org/10.1684/epd.2020.1132
Maillard L, Vignal J, Gavaret M, Guye M, Biraben A, McGonigal A, Chauvel P, Bartolomei F (2004) Semiologic and electrophysiologic correlations in temporal lobe seizure subtypes. Epilepsia 45:1590–1599. https://doi.org/10.1111/j.0013-9580.2004.09704.x
Pfänder M, Arnold S, Henkel A, Weil S, Werhahn KJ, Eisensehr I, Winkler PA, Noachtar S (2002) Clinical features and EEG findings differentiating mesial from neocortical temporal lobe epilepsy. Epileptic Disord 4:189–195
Querol Pascual MR (2007) Temporal lobe epilepsy: clinical semiology and neurophysiological studies. Semin Ultrasound CT MRI 28:416–423. https://doi.org/10.1053/j.sult.2007.09.004
Vinti V, Dell’Isola GB, Tascini G, Mencaroni E, Cara GD, Striano P, Verrotti A (2021) Temporal lobe epilepsy and psychiatric comorbidity. Front Neurol 12:775781. https://doi.org/10.3389/fneur.2021.775781
Article PubMed PubMed Central Google Scholar
Gaitatzis A, Trimble MR, Sander JW (2004) The psychiatric comorbidity of epilepsy. Acta Neurol Scand 110:207–220. https://doi.org/10.1111/j.1600-0404.2004.00324.x
Article CAS PubMed Google Scholar
Leite JP, Bortolotto ZA, Cavalheiro EA (1990) Spontaneous recurrent seizures in rats: an experimental model of partial epilepsy. Neurosci Biobehav Rev 14:511–517. https://doi.org/10.1016/S0149-7634(05)80076-4
Article CAS PubMed Google Scholar
Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335. https://doi.org/10.1016/0166-4328(83)90136-5
Article CAS PubMed Google Scholar
Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW (2007) Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol 35:984–999. https://doi.org/10.1080/01926230701748305
Ben-Ari Y, Lagowska J, Tremblay E, Le Gal La Salle G (1979) A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures. Brain Res 163:176–179. https://doi.org/10.1016/0006-8993(79)90163-X
Article CAS PubMed Google Scholar
Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous i recurrent seizures. Epilepsia 32:778–782. https://doi.org/10.1111/j.1528-1157.1991.tb05533.x
Article CAS PubMed Google Scholar
Seifert G, Steinhäuser C (2013) Neuron-astrocyte signaling and epilepsy. Exp Neurol 244:4–10. https://doi.org/10.1016/j.expneurol.2011.08.024
Thom M (2014) Review: hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobio 40:520–543. https://doi.org/10.1111/nan.12150
Bouilleret V, Ridoux V, Depaulis A, Marescaux C, Nehlig A, Le Gal La Salle G (1999) Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89:717–729. https://doi.org/10.1016/S0306-4522(98)00401-1
Article CAS PubMed Google Scholar
Schidlitzki A, Bascuñana P, Srivastava PK, Welzel L, Twele F, Töllner K, Käufer C, Gericke B, Feleke R, Meier M et al (2020) Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiol Dis 134:104664. https://doi.org/10.1016/j.nbd.2019.104664
Article CAS PubMed Google Scholar
De Furtado A, Braga M, Oliveira Vecchio Del GKJAC, Garcia-Cairasco F, Behavioral N (2002) Morphologic, and electroencephalographic evaluation of seizures induced by intrahippocampal microinjection of pilocarpine. Epilepsia 2002(43):37–39. https://doi.org/10.1046/j.1528-1157.43.s.5.41.x
Wang Y, Zaveri HP, Lee T-SW, Eid T (2009) The development of recurrent seizures after continuous intrahippocampal infusion of methionine sulfoximine in rats. Exp Neurol 220:293–302. https://doi.org/10.1016/j.expneurol.2009.08.034
Article CAS PubMed PubMed Central Google Scholar
Dhaher R, Wang H, Gruenbaum SE, Tu N, Lee T-SW, Zaveri HP, Eid T (2015) Effects of site-specific infusions of methionine sulfoximine on the temporal progression of seizures in a rat model of mesial temporal lobe epilepsy. Epilepsy Res 115:45–54. https://doi.org/10.1016/j.eplepsyres.2015.05.005
Article CAS PubMed PubMed Central Google Scholar
Albright B, Dhaher R, Wang H, Harb R, Lee T-SW, Zaveri H, Eid T (2017) Progressive neuronal activation accompanies epileptogenesis caused by hippocampal glutamine synthetase inhibition. Exp Neurol 288:122–133. https://doi.org/10.1016/j.expneurol.2016.10.007
Article CAS PubMed Google Scholar
Eid T, Ghosh A, Wang Y, Beckstrom H, Zaveri HP, Lee T-SW, Lai JCK, Malthankar-Phatak GH, De Lanerolle NC (2008) Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain 131:2061–2070.
Comments (0)