Kitagawa Y, Ishihara R, Ishikawa H et al (2023) Esophageal cancer practice guidelines 2022 edited by the Japan esophageal society: part 1. Esophagus 20:343–372. https://doi.org/10.1007/s10388-023-00993-2
Article PubMed PubMed Central Google Scholar
Tanaka Y, Yoshida K, Suetsugu T et al (2018) Recent advancements in esophageal cancer treatment in Japan. Ann Gastroenterol Surg 2:253–265. https://doi.org/10.1002/ags3.12174
Article PubMed PubMed Central Google Scholar
Kato K, Ito Y, Daiko H et al (2022) A randomized controlled phase III trial comparing two chemotherapy regimen and chemoradiotherapy regimen as neoadjuvant treatment for locally advanced esophageal cancer, JCOG1109 NExT study. J Clin Oncol 40:238. https://doi.org/10.1200/JCO.2022.40.4_suppl.238
Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378. https://doi.org/10.1016/j.ejphar.2014.07.025
Article CAS PubMed PubMed Central Google Scholar
Manohar S, Leung N (2018) Cisplatin nephrotoxicity: a review of the literature. J Nephrol 31:15–25. https://doi.org/10.1007/s40620-017-0392-z
Article CAS PubMed Google Scholar
Ghosh S (2019) Cisplatin: the first metal based anticancer drug. Bioorg Chem 88:102925. https://doi.org/10.1016/j.bioorg.2019.102925
Article CAS PubMed Google Scholar
Santabarbara G, Maione P, Rossi A, Gridelli C (2016) Pharmacotherapeutic options for treating adverse effects of cisplatin chemotherapy. Expert Opin Pharmacother 17:561–570. https://doi.org/10.1517/14656566.2016.1122757
Article CAS PubMed Google Scholar
Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41. https://doi.org/10.1159/000180580
Article CAS PubMed Google Scholar
Matsuo S, Imai E, Horio M et al (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992. https://doi.org/10.1053/j.ajkd.2008.12.034
Article CAS PubMed Google Scholar
Swan SK (1997) The search continues–an ideal marker of GFR. Clin Chem 43:913–914
Article CAS PubMed Google Scholar
Dalton RN (2010) Serum creatinine and glomerular filtration rate: perception and reality. Clin Chem 56:687–689. https://doi.org/10.1373/clinchem.2010.144261
Article CAS PubMed Google Scholar
Horie S, Oya M, Nangaku M et al (2018) Guidelines for treatment of renal injury during cancer chemotherapy 2016. Clin Exp Nephrol 22:210–244. https://doi.org/10.1007/s10157-017-1448-z
Abdelsalam M, Elmorsy E, Abdelwahab H et al (2018) Urinary biomarkers for early detection of platinum based drugs induced nephrotoxicity. BMC Nephrol 19:219. https://doi.org/10.1186/s12882-018-1022-2
Article CAS PubMed PubMed Central Google Scholar
Tekce BK, Uyeturk U, Tekce H et al (2015) Does the kidney injury molecule-1 predict cisplatin-induced kidney injury in early stage? Ann Clin Biochem 52:88–94. https://doi.org/10.1177/0004563214528312
Article CAS PubMed Google Scholar
Ghadrdan E, Ebrahimpour S, Sadighi S, Chaibakhsh S, Jahangard-Rafsanjani Z (2020) Evaluation of urinary neutrophil gelatinase-associated lipocalin and urinary kidney injury molecule-1 as biomarkers of renal function in cancer patients treated with cisplatin. J Oncol Pharm Pract 26:1643–1649. https://doi.org/10.1177/1078155220901756
Article CAS PubMed Google Scholar
Hosohata K, Ando H, Fujiwara Y, Fujimura A (2011) Vanin-1; a potential biomarker for nephrotoxicant-induced renal injury. Toxicology 290:82–88. https://doi.org/10.1016/j.tox.2011.08.019
Article CAS PubMed Google Scholar
Hosohata K, Ando H, Fujimura A (2012) Urinary Vanin-1 as a novel biomarker for early detection of drug-induced acute kidney injury. J Pharmacol Exp Ther 341:656–662 LP – 662. https://doi.org/10.1124/jpet.112.192807
Article CAS PubMed Google Scholar
Hosohata K, Washino S, Kubo T et al (2016) Early prediction of cisplatin-induced nephrotoxicity by urinary vanin-1 in patients with urothelial carcinoma. Toxicology 359–360:71–75. https://doi.org/10.1016/j.tox.2016.06.011
Article CAS PubMed Google Scholar
Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group (2012) Kidney Int Suppl 2:19–36. https://doi.org/10.1038/kisup.2011.32
Aurrand-Lions M, Galland F, Bazin H et al (1996) Vanin-1, a novel GPI-linked perivascular molecule involved in thymus homing. Immunity 5:391–405. https://doi.org/10.1016/s1074-7613(00)80496-3
Article CAS PubMed Google Scholar
Pitari G, Malergue F, Martin F et al (2000) Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice. FEBS Lett 483:149–154. https://doi.org/10.1016/s0014-5793(00)02110-4
Berruyer C, Martin FM, Castellano R et al (2004) Vanin-1–/– mice exhibit a glutathione-mediated tissue resistance to oxidative stress. Mol Cell Biol 24:7214–7224. https://doi.org/10.1128/MCB.24.16.7214-7224.2004
Article CAS PubMed PubMed Central Google Scholar
Hosohata K (2016) Role of oxidative stress in drug-induced kidney injury. Int J Mol Sci 17. https://doi.org/10.3390/ijms17111826. https:
Yoshida T, Kurella M, Beato F et al (2002) Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int 61:1646–1654. https://doi.org/10.1046/j.1523-1755.2002.00341.x
Article CAS PubMed Google Scholar
Hosohata K, Jin D, Takai S, Iwanaga K (2018) Vanin-1 in renal pelvic urine reflects kidney Injury in a rat model of hydronephrosis. Int J Mol Sci 19. https://doi.org/10.3390/ijms19103186. https:
Miyoshi T, Uoi M, Omura F et al (2021) Risk factors for cisplatin-induced nephrotoxicity: a multicenter retrospective study. Oncology 99:105–113. https://doi.org/10.1159/000510384
Article CAS PubMed Google Scholar
Uchida M, Kondo Y, Suzuki S, Hosohata K (2019) Evaluation of Acute Kidney Injury Associated with Anticancer drugs used in gastric Cancer in the Japanese adverse drug Event Report Database. Ann Pharmacother 53:1200–1206. https://doi.org/10.1177/1060028019865870
Article CAS PubMed Google Scholar
Ogura N, Mera T, Sato F, Ishikawa I (1991) Longitudinal observation of cementum regeneration through multiple fluorescent labeling. J Periodontol 62:284–291. https://doi.org/10.1902/jop.1991.62.4.284
Article CAS PubMed Google Scholar
Chen C-Y, Chen K-Y, Shih J-Y, Yu C-J (2020) Clinical factors associated with treatment toxicity of pemetrexed plus platinum in elderly patients with non-small cell lung cancer. J Formos Med Assoc 119:1506–1513. https://doi.org/10.1016/j.jfma.2019.12.007
Article CAS PubMed Google Scholar
Cubillo A, Cornide M, López JL et al (2001) Renal tolerance to cisplatin in patients 70 years and older. Am J Clin Oncol 24:192–197. https://doi.org/10.1097/00000421-200104000-00018
Article CAS PubMed Google Scholar
Galfetti E, Cerutti A, Ghielmini M, Zucca E, Wannesson L (2020) Risk factors for renal toxicity after inpatient cisplatin administration. BMC Pharmacol Toxicol 21:19. https://doi.org/10.1186/s40360-020-0398-3
Comments (0)