Peptides derived from the POU domain of BRN2 show antitumor activity against murine melanoma model cells in vitro and in vivo

Bertolotto C, Melanoma (2013) From Melanocyte to Genetic Alterations and Clinical Options. Scientifica. v. 2013

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

Article  CAS  PubMed  Google Scholar 

Mayer IA, Arteaga CL (2016) The PI3K/AKT pathway as a target for Cancer treatment. Annu Rev Med 67:11–28. https://doi.org/10.1146/annurev-med-062913-051343

Article  CAS  PubMed  Google Scholar 

Sun Y, Liu W, Liu T, Feng X, Yang N, Zhou H (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal Receptors Signal Transduct Res V 35(6):600–604

Article  CAS  Google Scholar 

Savoia P, Fava P, Casoni F, Cremona O (2019) Targeting the ERK signaling pathway in melanoma. Int J Mol Sci 20:1–37. https://doi.org/10.3390/ijms20061483

Article  CAS  Google Scholar 

Pathria G, Ronai ZA (2018) BRN2 invade. Cancer Cell 34:1–3. https://doi.org/10.1016/j.ccell.2018.06.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonvin E, Falletta P, Shaw H, Delmas V, Goding CR (2012) A phosphatidylinositol 3-kinase-Pax3 axis regulates BRN2 expression in melanoma. Mol Cell Biology 32(22):4674–4683. https://doi.org/10.1128/MCB.01067-12

Article  CAS  Google Scholar 

Wellbrock C, Rana S, Paterson H, PIckersgill H, Brummelkamp T, Marais R (2008) Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS ONE 163(7):27341–27349. https://doi.org/10.1371/journal.pone.0002734

Article  CAS  Google Scholar 

Cook AL, Sturm RA (2008) POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumorigenesis. Pigment Cell Melanoma Res 21:611–626. https://doi.org/10.1111/j.1755-148X.2008.00510.x

Article  CAS  PubMed  Google Scholar 

Hartman ML, Czyz M (2015) MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 72:1249–1260. https://doi.org/10.1007/s00018-014-1791-0

Article  CAS  PubMed  Google Scholar 

Houslay MD (2011) Hard times for oncogenic Braf-expressing melanoma cells. Cancer Cell 19:3–4. https://doi.org/10.1016/j.ccr.2011.01.004

Article  CAS  PubMed  Google Scholar 

Ellmann L, Joshi MB, Resink TJ, Bosserhoff AK, Kuphal S (2012) BRN2 is a transcriptional repressor of CDH13 (T-cadherin) in melanoma cells. Lab Invest 92:1788–1800. https://doi.org/10.1038/labinvest.2012.140

Article  CAS  PubMed  Google Scholar 

Vale Coelho IE, Arruda DC, Taranto AG (2016) In Silico studies of the interaction between BRN2 protein and more DNA. Journal Mol Modeling V 22(9):228

Article  Google Scholar 

Goodall J, Wellbrock C, Dexter TJ, Roberts K, Marais R, Goding CR (2004) The BRN2 transcription factor links activated BRAF to melanoma proliferation. Mol Cell Biology 24(7):2923–2931. https://doi.org/10.1128/MCB.24.7.2923-2931.2004

Article  CAS  Google Scholar 

Amine Bouhlel M, Lambert M, David-Cordonnier MH (2015) Targeting transcription factor binding to DNA by competing with DNA binders as an approach for controlling gene expression. Curr Top Med Chemistryn 15(14):1323–1358. https://doi.org/10.2174/1568026615666150413154713

Article  CAS  Google Scholar 

Arruda DC, Santos LCP, Melo FM et al (2012) β-Actin-binding complementarity-determining region 2 of variable heavy chain from monoclonal antibody C7 induces apoptosis in several human tumor cells and is protective against metastatic melanoma. J Biol Chem 287(18):1412–14922. https://doi.org/10.1074/jbc.M111.322362

Article  CAS  Google Scholar 

Rabaça AN, Arruda DC, Figueiredo CR et al (2016) Ac-1001 H3 CDR peptide induces apoptosis and signs of autophagy in vitro and exhibits antimetastatic activity in a syngeneic melanoma model. FEBS Open Bio 6:885–901. https://doi.org/10.1002/2211-5463.12080

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taraboletti G, Poli M, Dossil R et al (2004) Antiangiogenic activity of aplidine, a new agent of marine origin. British J Cancer V 90:24182424

Google Scholar 

Massaoka MH, Matsuo AL, Figueiredo CR, Faria NGC, Azevedo RA, Travassos LR (2014) A novel cell-penetrating peptide derived from WT1 enhances p53 activity, induces cell senescence and displays antimelanoma activity in Xeno and syngeneic systems. FEBS Open Bio 4:153–161. https://doi.org/10.1016/j.fob.2014.01.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Cunha FFM, Mugnol KCU, De Melo FM et al (2019) Peptide R18H from BRN2 transcription factor POU domain displays antitumor activity In vitro and In vivo and induces apoptosis in B16F10-Nex2 cells. Anticancer Agents Med Chem 19(3):389–401. https://doi.org/10.2174/1871520618666181109164246

Article  CAS  PubMed  Google Scholar 

Cesar MCM, Mortara RA, Souza VS et al (2024) Peptide derived from the BRN2 POU domain reduces metastasis in vivo and inhibits cell migration and invasion in vitro. Anticancer Res 44(1):71–84. https://doi.org/10.21873/anticanres.16789

Article  CAS  PubMed  Google Scholar 

Dobroff AS, Rodrigues EG, Moraes JZ, Travassos LR (2002) Protective anti-tumor monoclonal antibody recognizes a conformational epitope similar to melibiose at the surface of invasive murine melanoma cells. Hybrid Hybridomics 21:321–331. https://doi.org/10.1089/153685902761022661

Article  CAS  PubMed  Google Scholar 

Rodriguez LG, Wu X, Guan J (2005) Wound-Healing assay. Cell Migration 294:23–29. https://doi.org/10.1385/1-59259-860-9:023

Article  Google Scholar 

Hu H, Wang M, Liu Z et al (2018) MEGF6 promotes the Epithelial-to-Mesenchymal transition via the TGFβ/ SMAD signaling pathway in colorectal Cancer metastasis. Cell Physiol Biochem 46:1895–1906. https://doi.org/10.1159/000489374

Article  CAS  PubMed  Google Scholar 

Pereira FV, Arruda DC, Figueiredo CR et al (2013) FTY720 induces apoptosis in B16F10-NEX2 murine melanoma cells, limits metastatic development in vivo, and modulates the immune system. Clinics V 68:1–10

Google Scholar 

Bradford MM (1976) A rapid and Sesntivie method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye biding. Analitycal Biochem 72:248–254

Article  CAS  Google Scholar 

Maia VSC, Berzaghi R, Arruda DC et al (2022) PLP2derived peptide Rb4 triggers PARP-1mediated necrotic death in murine melanoma cells. Sci Rep 12(2890):1–12. https://doi.org/10.1038/s41598-022-06429-8.7

Article  Google Scholar 

Ritzefeld M, Sewald N (2012) Real-Time analysis of specific Protein-DNA interactions with surface plasmon resonance. J Amino Acids 816032. https://doi.org/10.1155/2012/816032

Xue G, Romano E, Massi D, Mandalà M (2016) Wnt-Beta Catenin signaling in melanoma: preclinical rationale and novel therapeutic insights. Cancer Treat Rev 49:1–12. https://doi.org/10.1016/j.ctrv.2016.06.009

Article  CAS  PubMed  Google Scholar 

Leung GP, Feng T, Sigoillot FD et al (2019) Hyperactivation of MAPK signaling is deleterious to RAS/RAF-mutant melanoma. Mol Cancer Res 17(1):199–211. https://doi.org/10.1158/1541-7786.MCR-18-0327

Article  CAS  PubMed  Google Scholar 

Chen G, Gao C, Gao X et al (2018) Wnt/β-catenin pathway activation mediates adaptive resistance to BRAF Inhibition in colorectal cancer. Mol Cancer Therapy 17(4):806–813. https://doi.org/10.1158/1535-7163

Article  Google Scholar 

Burotto M, Chiou VL, Lee J, Kohn EC (2014) The MAPK pathway across different malignancies: A new perspective. Cancer 120(22):3446–3456. https://doi.org/10.1002/cncr.28864

Article  CAS  PubMed  Google Scholar 

Goodall J, Carreira S, Denat L et al (2008) BRN2 represses microphthalmia-Associated transcription factor expression and marks a distinct subpopulation of microphthalmia associated transcription factor–Negative melanoma cells. Cancer Res 68(19):7788–7794. https://doi.org/10.1158/0008-5472.CAN-08-1053

Article  CAS 

Comments (0)

No login
gif