Recapitulating the potential contribution of protein S-palmitoylation in cancer

Ramazi S. and Zahiri J., Posttranslational modifications in proteins: resources, tools and prediction methods. Database (Oxford), 2021. 2021:p. baab012

Chen, L., & Kashina, A. (2021). Post-translational modifications of the protein termini. Frontiers in cell and developmental biology, 9, 719590.

Article  PubMed  PubMed Central  Google Scholar 

Zhong Q., et al., Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. Med Comm (2020), 2023. 4(3): p. e261.

Wang, H., et al. (2023). Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Therapy, 30(4), 529–547.

Article  CAS  PubMed  Google Scholar 

Wang, R., & Chen, Y. Q. (2022). Protein Lipidation Types: Current Strategies for Enrichment and Characterization. International Journal of Molecular Sciences, 23(4), 2365.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prendeville, H., & Lynch, L. (2022). Diet, lipids, and antitumor immunity. Cellular & Molecular Immunology, 19(3), 432–444.

Article  CAS  Google Scholar 

Horn, A., & Jaiswal, J. K. (2019). Structural and signaling role of lipids in plasma membrane repair. Current Topics in Membranes, 84, 67–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, H., et al. (2018). Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chemical Reviews, 118(3), 919–988.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bogdanov, M., Mileykovskaya, E., & Dowhan, W. (2008). Lipids in the assembly of membrane proteins and organization of protein supercomplexes: Implications for lipid-linked disorders. SubCellular Biochemistry, 49, 197–239.

Article  PubMed  Google Scholar 

Corradi, V., et al. (2019). Emerging Diversity in Lipid-Protein Interactions. Chemical Reviews, 119(9), 5775–5848.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cournia, Z., et al. (2015). Membrane Protein Structure, Function, and Dynamics: A Perspective from Experiments and Theory. Journal of Membrane Biology, 248(4), 611–640.

Article  CAS  PubMed  Google Scholar 

Żak, A., et al. (2023). Deciphering Lipid Arrangement in Phosphatidylserine/Phosphatidylcholine Mixed Membranes: Simulations and Experiments. Langmuir, 39(51), 18995–19007.

Article  PubMed  PubMed Central  Google Scholar 

Kastelowitz, N., et al. (2017). Peptides derived from MARCKS block coagulation complex assembly on phosphatidylserine. Science and Reports, 7(1), 4275.

Article  Google Scholar 

Lemmon, M. A. (2007). Pleckstrin homology (PH) domains and phosphoinositides. Biochemical Society Symposia, 74, 81–93.

Article  CAS  Google Scholar 

Singh, N., et al. (2021). Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins. Nature Communications, 12(1), 4339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Resh, M. D. (2013). Covalent lipid modifications of proteins. Current Biology, 23(10), R431–R435.

Article  CAS  PubMed  Google Scholar 

Brunsveld L., Waldmann H., and Huster D., Membrane binding of lipidated Ras peptides and proteins — The structural point of view. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2009. 1788(1): pp. 273–288.

Santiago-Tirado, F. H., & Doering, T. L. (2016). All about that fat: Lipid modification of proteins in Cryptococcus neoformans. Journal of Microbiology, 54(3), 212–222.

Article  CAS  PubMed  Google Scholar 

De, I., & Sadhukhan, S. (2018). Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. European Journal of Cell Biology, 97(5), 319–338.

Article  CAS  PubMed  Google Scholar 

Guan, X., & Fierke, C. A. (2011). Understanding Protein Palmitoylation: Biological Significance and Enzymology. Science China: Chemistry, 54(12), 1888–1897.

Article  CAS  PubMed  Google Scholar 

Yuan, Y., et al. (2024). Protein lipidation in health and disease: Molecular basis, physiological function and pathological implication. Signal Transduction and Targeted Therapy, 9(1), 60.

Article  PubMed  PubMed Central  Google Scholar 

Spinelli, M. (2018). Nutrient-Dependent Changes of Protein Palmitoylation: Impact on Nuclear Enzymes and Regulation of Gene Expression. International Journal of Molecular Sciences, 19(12), 3820.

Article  PubMed  PubMed Central  Google Scholar 

Hanna, C. C., Kriegesmann, J., Dowman, L. J., Becker, C. F., & Payne, R. J. (2022). Chemical synthesis and semisynthesis of lipidated proteins. Angewandte Chemie International Edition, 61(15), e202111266.

Article  CAS  PubMed  Google Scholar 

Nůsková, H., et al. (2023). Competition for cysteine acylation by C16: 0 and C18: 0 derived lipids is a global phenomenon in the proteome. Journal of Biological Chemistry, 299(9), 105088.

Article  PubMed  PubMed Central  Google Scholar 

Chen, J. J., Fan, Y., & Boehning, D. (2021). Regulation of dynamic protein S-acylation. Frontiers in Molecular Biosciences, 8, 656440.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson, A. M., & Ragan, M. A. (2016). Palmitoylation: A protein S-acylation with implications for breast cancer. NPJ Breast Cancer, 2, 16028.

Article  PubMed  PubMed Central  Google Scholar 

Putilina, T., Wong, P., & Gentleman, S. (1999). The DHHC domain: A new highly conserved cysteine-rich motif. Molecular and Cellular Biochemistry, 195(1–2), 219–226.

Article  CAS  PubMed  Google Scholar 

Fukata Y., Bredt D.S., and Fukata M., Protein palmitoylation by DHHC protein family. In: Kittler J.T., Moss S.J., editors. The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology. Boca Raton (FL): CRC Press/Taylor & Francis; 2006. Chapter 5.

Chaturvedi, S., et al. (2023). Role of EGFR and FASN in breast cancer progression. J Cell Commun Signal, 17(4), 1249–1282.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linder, M. E., & Deschenes, R. J. (2007). Palmitoylation: Policing protein stability and traffic. Nature Reviews Molecular Cell Biology, 8(1), 74–84.

Article  CAS  PubMed  Google Scholar 

Ramzan, F., et al. (2023). Lost in traffic: Consequences of altered palmitoylation in neurodegeneration. Frontiers in Physiology, 14, 1166125.

Article  PubMed  PubMed Central  Google Scholar 

Cervilla-Martínez J.F., et al., Altered Cortical Palmitoylation Induces Widespread Molecular Disturbances in Parkinson's Disease. Int J Mol Sci, 2022. 23(22).

Liao, D., et al. (2024). The role of s-palmitoylation in neurological diseases: Implication for zDHHC family. Frontiers in Pharmacology, 14, 1342830.

Article  PubMed  PubMed Central  Google Scholar 

Li, W., et al. (2023). Aberrant palmitoylation caused by a ZDHHC21 mutation contributes to pathophysiology of Alzheimer’s disease. BMC Medicine, 21(1), 223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, H., Li, X., Ma, C., Wang, K., Zhou, J., Chen, J., & Shi, Y. (2020). Fine-mapping of ZDHHC2 identifies risk variants for schizophrenia in the Han Chinese population. Molecular Genetics & Genomic Medicine, 8(7), e1190.

Article  CAS  Google Scholar 

Casellas-Vidal, D., et al. (2023). ZDHHC15 as a candidate gene for autism spectrum disorder. American Journal of Medical Genetics. Part A, 191(4), 941–947.

Article 

Comments (0)

No login
gif