Salman, O. H., Taha, Z., Alsabah, M. Q., Hussein, Y. S., Mohammed, A. S., and Aal-Nouman, M., A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. Comput. Methods Programs Biomed. 209:106357, 2011. https://doi.org/10.1016/j.cmpb.2021.106357
Jiang, H., Mao, H., Lu, H., Lin, P., Garry, W., Lu, H., ... and Chen, X., Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease. Int. J. Med. Inform. 145:104326, 2021. https://doi.org/10.1016/j.ijmedinf.2020.104326
Wang, B., Li, W., Bradlow, A., Bazuaye, E., Chan, A. T., Improving triaging from primary care into secondary care using heterogeneous data-driven hybrid machine learning. Decis. Support Syst. 166:113899, 2023. https://doi.org/10.1016/j.dss.2022.113899
Schöning, V., Liakoni, E., Baumgartner, C., Exadaktylos, A. K., Hautz, W. E., Atkinson, A., Hammann, F., Development and validation of a prognostic COVID-19 severity assessment (COSA) score and machine learning models for patient triage at a tertiary hospital. J. Transl. Med. 19:1–11, 2021. https://doi.org/10.1186/s12967-021-02720-w
Jacobson, T., and Segerberg, G., A machine learning-based statistical analysis of predictors for spinal cord stimulation success, 2019.
Goudman, L., Rigoard, P., Billot, M., Duarte, R. V., Eldabe, S., and Moens, M., Patient selection for spinal cord stimulation in treatment of pain: sequential decision-making model—A narrative review. J. Pain Res. 1163–1171, 2022. https://doi.org/10.2147/jpr.s250455
Thomson, S., Huygen, F., Prangnell, S., Baranidharan, G., Belaïd, H., Billet, B., ... and Stoevelaar, H., Applicability and validity of an e-health tool for the appropriate referral and selection of patients with chronic pain for spinal cord stimulation: results from a European retrospective study. Neuromodulation: Technology at the Neural Interface. 26(1), 164–171, 2023. https://doi.org/10.1016/j.neurom.2021.12.006
Patel, H., Rajput, D. S., Stan, O. P., and Miclea, L. C., A new fuzzy adaptive algorithm to classify imbalanced data. Comput. Mater. Continua. 70(1), 2022. https://doi.org/10.32604/cmc.2022.017114
Kumar, V., Lalotra, G. S., Sasikala, P., Rajput, D. S., Kaluri, R., Lakshmanna, K., ... and Uddin, M., Addressing binary classification over class imbalanced clinical datasets using computationally intelligent techniques. Healthcare. 10(7):1293, 2022. https://doi.org/10.3390/healthcare10071293
Khushi, M., Shaukat, K., Alam, T.M., Hameed, I.A., Uddin, S., Luo, S., Yang, X., and Reyes, M. C., A comparative performance analysis of data resampling methods on imbalance medical data. IEEE Access. 9:109960–109975, 2021. https://doi.org/10.1109/access.2021.3102399
Wang, L., Han, M., Li, X., Zhang, N., and Cheng, H., Review of classification methods on unbalanced data sets. IEEE Access. 9:64606–64628, 2021. https://doi.org/10.1109/access.2021.3074243
Gu, Q., Tian, J., Li, X., and Jiang, S. A novel random forest integrated model for imbalanced data classification problem. Knowl-Based Syst. 250:109050, 2022. https://doi.org/10.1016/j.knosys.2022.109050
Koziarski, M., Potential anchoring for imbalanced data classification. Pattern Recognit. 120:108114, 2021. https://doi.org/10.1016/j.patcog.2021.108114
Khafaga, D. S., Alharbi, A. H., Mohamed, I., and Hosny, K. M., An integrated classification and association rule technique for early-stage diabetes risk prediction. Healthcare. 10(10):2070, 2022. https://doi.org/10.3390/healthcare10102070
Bhanot, N., Mariyappa, N., Anitha, H., Bhargava, G. K., Velmurugan, J., and Sinha, S., Seizure detection and epileptogenic zone localisation on heavily skewed MEG data using RUSBoost machine learning technique. Int. J. Neurosci. 132(10):963–974, 2022. https://doi.org/10.1080/00207454.2020.1858828
Article PubMed CAS Google Scholar
Wu, X., and Wang, J. Application of bagging, boosting and stacking ensemble and easyensemble methods for landslide susceptibility mapping in the three gorges reservoir area of China. Int. J. Environ. Res. Public Health. 20(6):4977, 2023. https://doi.org/10.3390/ijerph20064977
Article PubMed PubMed Central Google Scholar
Wen, A., Fu, S., Moon, S., El Wazir, M., Rosenbaum, A., Kaggal, V. C., ... and Fan, J., Desiderata for delivering NLP to accelerate healthcare AI advancement and a Mayo Clinic NLP-as-a-service implementation. NPJ Digit. Med. 2(1):130, 2019. https://doi.org/10.1038/s41746-019-0208-8
Article PubMed PubMed Central Google Scholar
Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., and Mueller, A., Scikit-learn: machine learning without learning the machinery. Assoc. Comput. Machin. 19(1):29–33, 2015. https://doi.org/10.1145/2786984.2786995
LemaÃŽtre, G., Nogueira, F., and Aridas, C. K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17):1–5, 2017. http://jmlr.org/papers/v18/16-365.html
Ivan, T., Two modifications of CNN. IEEE Trans. Syst. Man. Commun. SMC. 6:769–772, 1976. https://doi.org/10.1109/tsmc.1976.4309452
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. SMOTE: synthetic minority oversampling technique. J. Artif. Intell. Res. 16:321–357, 2022. https://doi.org/10.1613/jair.953
He, H., Bai, Y., Garcia, E. A., and Li, S., ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322–1328). IEEE, 2008. https://doi.org/10.1109/IJCNN.2008.4633969
Batista, G. E., Bazzan, A. L., and Monard, M. C., Balancing training data for automated annotation of keywords: a case study. Wob. 3:10–18, 2003.
Batista, G. E., Prati, R. C., and Monard, M. C., A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1):20–29, 2004.
Liu, X. Y., Wu, J., and Zhou, Z. H., Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. B (Cybernetics). 39(2):539–550, 2008. https://doi.org/10.1109/tsmcb.2008.2007853
Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., and Napolitano, A., RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. A: Syst. Hum. 40(1), 2010. https://doi.org/10.1109/TSMCA.2009.2029559
Louppe, G., and Geurts, P., Ensembles on random patches. Machine learning and knowledge discovery in databases: European conference, ECML PKDD 2012, Bristol, UK, September 24–28, 2012. Proceedings, Part I 23 (pp. 346–361). Springer Berlin Heidelberg, 2012. https://doi.org/10.1007/978-3-642-33460-3_28
Chen, C., Liaw, A., and Breiman, L., Using random forest to learn imbalanced data. Technical Report, University of California, Berkeley, 2004.
Freund, Y., and Schapire, R. E., A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1):119–139, 1997. https://doi.org/10.1006/jcss.1997.1504
Huang, Y., and Hanauer, D. A., Patient no-show predictive model development using multiple data sources for an effective overbooking approach. Appl. Clin. Inform. 5(03):836–860, 2014. https://doi.org/10.4338/aci-2014-04-ra-0026
Article PubMed PubMed Central CAS Google Scholar
Bhattacharyya, A., Sheikhalishahi, S., Torbic, H., Yeung, W., Wang, T., Birst, J., ... and Osmani, V., Delirium prediction in the ICU: designing a screening tool for preventive interventions. JAMIA Open. 5(2):ooac048, 2022. https://doi.org/10.1093/jamiaopen/ooac048
Article PubMed PubMed Central Google Scholar
umap-learn. PyPI. Published August 14, 2019. https://pypi.org/project/umap-learn/
Comments (0)