Van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125.
Article PubMed CAS Google Scholar
Couch Y, Buzàs EI, Vizio DD, Gho YS, Harrison P, Hill AF, Lötvall J, Raposo G, Stahl PD, Théry C, Witwer KW, Carter DRF. A brief history of nearly EV-erything—the rise and rise of extracellular vesicles. J Extracell Vesicles. 2021;10: e12144. https://doi.org/10.1002/JEV2.12144.
Article PubMed PubMed Central CAS Google Scholar
Waqas MY, Javid MA, Nazir MM, Niaz N, Nisar MF, Manzoor Z, Bhatti SA, Hameed S, Khaliq MH. Extracellular vesicles and exosome: insight from physiological regulatory perspectives. J Physiol Biochem. 2022;78:573–80. https://doi.org/10.1007/S13105-022-00877-6.
Article PubMed CAS Google Scholar
Sohal IS, Kasinski AL. Emerging diversity in extracellular vesicles and their roles in cancer. Front Oncol. 2023. https://doi.org/10.3389/FONC.2023.1167717.
Article PubMed PubMed Central Google Scholar
Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16:748–59. https://doi.org/10.1038/S41565-021-00931-2.
Article PubMed CAS Google Scholar
Cvjetkovic A, Jang SC, Konečná B, Höög JL, Sihlbom C, Lässer C, Lötvall J. Detailed analysis of protein topology of extracellular vesicles-evidence of unconventional membrane protein orientation. Sci Rep. 2016;6:36338. https://doi.org/10.1038/SREP36338.
Article PubMed PubMed Central CAS Google Scholar
Kowal J, Arras G, Colombo M, Jouve M, Morath J, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113:968–77. https://doi.org/10.1073/PNAS.1521230113.
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9. https://doi.org/10.1038/NCB1596.
Article PubMed CAS Google Scholar
Palviainen M, Saraswat M, Varga Z, Kitka D, Neuvonen M, Puhka M, Joenväärä S, Renkonen R, Nieuwland R, Takatalo M, Siljander PRM. Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo—implications for biomarker discovery. PLoS ONE. 2020;15: e0236439. https://doi.org/10.1371/JOURNAL.PONE.0236439.
Article PubMed PubMed Central CAS Google Scholar
Tóth E, Turiák L, Visnovitz T, Cserép C, Mázló A, Sódar BW, Försönits AI, Petővári G, Sebestyén A, Komlósi Z, Drahos L, Kittel Á, Nagy G, Bácsi A, Dénes Á, Gho YS, Szabó-Taylor K, Buzás EI. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J Extracell Vesicles. 2021;10: e12140. https://doi.org/10.1002/JEV2.12140.
Article PubMed PubMed Central Google Scholar
Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles. 2022;11: e12260. https://doi.org/10.1002/JEV2.12260.
Article PubMed PubMed Central CAS Google Scholar
Roca J, Rodriguez-Martinez H, Padilla L, Lucas X, Barranco I. Extracellular vesicles in seminal fluid and effects on male reproduction. An overview in farm animals and pets. Anim Reprod Sci. 2022;246:106853. https://doi.org/10.1016/J.ANIREPROSCI.2021.106853.
Wolf M, Poupardin RW, Ebner-Peking P, Andrade AC, Blöchl C, Obermayer A, Gomes FG, Vari B, Maeding N, Eminger E, et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. J Extracell Vesicles. 2022;11: e12207. https://doi.org/10.1002/JEV2.12207.
Article PubMed PubMed Central CAS Google Scholar
Yunusova NV, Popova NO, Udintseva IN, Klyushina TS, Kazantseva DV, Smirnova LP. The role of intravesicular proteins and the protein corona of extracellular vesicles in the development of drug-induced polyneuropathy. Curr Issues Mol Biol. 2023;45:3302–14. https://doi.org/10.3390/CIMB45040216.
Article PubMed PubMed Central CAS Google Scholar
Bisht S, Faiq M, Tolahunase M, Dada R. Oxidative stress and male infertility. Nat Rev Urol. 2017;14:470–85. https://doi.org/10.1038/NRUROL.2017.69.
Article PubMed CAS Google Scholar
Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20:689–709. https://doi.org/10.1038/S41573-021-00233-1.
Article PubMed PubMed Central CAS Google Scholar
Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, Pramodh S, Alsulimani A, Alkhanani MF, Harakeh S, Hussain A, Haque S, Reshi MS. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells. 2022;11:552. https://doi.org/10.3390/CELLS11030552.
Article PubMed PubMed Central CAS Google Scholar
Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM, Teleanu RI. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 2022;23:5938. https://doi.org/10.3390/IJMS23115938.
Article PubMed PubMed Central CAS Google Scholar
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84. https://doi.org/10.1016/J.BIOCEL.2006.07.001.
Article PubMed CAS Google Scholar
Kim HO, Yeom M, Kim J, Kukreja A, Na W, Choi J, Kang A, Yun D, Lim JW, Song D, Haam S. Reactive oxygen species-regulating polymersome as an antiviral agent against influenza virus. Small. 2017. https://doi.org/10.1002/SMLL.201700818.
Article PubMed PubMed Central Google Scholar
Mesquita FS, Dyer SN, Heinrich DA, Bulun SE, Marsh EE, Nowak RA. Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. Biol Reprod. 2010;82:341–51. https://doi.org/10.1095/BIOLREPROD.108.075887.
Article PubMed CAS Google Scholar
Sontakke AN, Tare RS. A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta. 2002;318:145–8. https://doi.org/10.1016/S0009-8981(01)00766-5.
Article PubMed CAS Google Scholar
Li XY, Meng L, Shen L, Ji HF. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene. Food Res Int. 2023;169: 112749. https://doi.org/10.1016/J.FOODRES.2023.112749.
Article PubMed CAS Google Scholar
Trentini A, Maritati M, Rosta V, Cervellati C, Manfrinato MC, Hanau S, Greco P, Bonaccorsi G, Bellini T, Contini C. Vaginal lactoferrin administration decreases oxidative stress in the amniotic fluid of pregnant women: an open-label randomized pilot study. Front Med (Lausanne). 2020;7: 565572. https://doi.org/10.3389/FMED.2020.00555/BIBTEX.
Aureliano M, De Sousa-Coelho AL, Dolan CC, Roess DA, Crans DC. Biological consequences of vanadium effects on formation of reactive oxygen species and lipid peroxidation. Int J Mol Sci. 2023;24:5382. https://doi.org/10.3390/IJMS24065382.
Article PubMed PubMed Central CAS Google Scholar
Garcia-Segura S, Ribas-Maynou J, Lara-Cerrillo S, Garcia-Peiró A, Castel AB, Benet J, Oliver-Bonet M. Relationship of seminal oxidation-reduction potential with sperm DNA integrity and pH in idiopathic infertile patients. Biology (Basel). 2020;9:1–12. https://doi.org/10.3390/BIOLOGY9090262.
Moldogazieva NT, Lutsenko SV, Terentiev AA. Reactive oxygen and nitrogen species-induced protein modifications: implication in carcinoge
Comments (0)