Shieh PB. Muscular Dystrophies and Other Genetic Myopathies. Neurol Clin. 2013;31(4):1009–29.
Straub V, Murphy A, Udd B. LGMD workshop study group. 229th ENMC international workshop: Limb girdle muscular dystrophies – Nomenclature and reformed classification Naarden, the Netherlands, 17–19 March 2017. Neuromuscul Disord. 2018;28(8).702–10.
Murphy AP, Straub V. The Classification, Natural History and Treatment of the Limb Girdle Muscular Dystrophies. Vol. 2, Journal of Neuromuscular Diseases. IOS Press; 2015. p. S7–19.
Wicklund MP, Kissel JT. The limb-girdle muscular dystrophies. Vol. 32, Neurologic Clinics. W.B. Saunders; 2014. p. 729–49.
Mercuri E, Bönnemann CG, Muntoni F. Muscular dystrophies [Internet]. Vol. 394, www.thelancet.com. 2019. Available from: www.thelancet.com.
Verhaart IEC, Putker K, van de Vijver D, Tanganyika-De Winter CL, Pasteuning-Vuhman S, Plomp JJ, et al. Cross-sectional study into age-related pathology of mouse models for limb girdle muscular dystrophy types 2D and 2F. PLoS One. 2019;14(8):e0220665.
Pasteuning-Vuhman S, Putker K, Tanganyika-De Winter CL, Boertje-Van Der Meulen JW, Van Vliet L, Overzier M, et al. Natural disease history of mouse models for limb girdle muscular dystrophy types 2D and 2F. PLoS One. 2017;12(8):e0182704.
Mahdy MAA. Skeletal muscle fibrosis: an overview. Cell Tissue Res [Internet]. 2019;375(3):575–88. Available from: http://link.springer.com/https://doi.org/10.1007/s00441-018-2955-2.
Raffaghello L, Principi E, Baratto S, Panicucci C, Pintus S, Antonini F, et al. P2X7 Receptor Antagonist Reduces Fibrosis and Inflammation in a Mouse Model of Alpha-Sarcoglycan Muscular Dystrophy. Pharmaceuticals (Basel). 2022;15(1):89.
Tidball JG. Mechanisms of muscle injury, repair, and regeneration. Compr Physiol. 2011;1(4):2029–62.
Coral-Vazquez R, Cohn RD, Moore SA, Hill JA, Weiss RM, Davisson RL, et al. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell. 1999;98(4):465–74.
Mercuri E, Muntoni F. Muscular dystrophies. Vol. 381, The Lancet. Elsevier B.V.; 2013. p. 845–60.
Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, et al. LPA receptors: Subtypes and biological actions. Vol. 50, Annual Review of Pharmacology and Toxicology. 2010. p. 157–86.
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: Pharmacology, physiology, and pathophysiology. Vol. 55, Journal of Lipid Research. American Society for Biochemistry and Molecular Biology Inc.; 2014. p. 1192–214.
Solís KH, Romero-Ávila MT, Guzmán-Silva A, García-Sáinz JA. The LPA3 receptor: Regulation and activation of Signaling pathways. Vol. 22, International Journal of Molecular Sciences. MDPI; 2021.
Yung YC, Stoddard NC, Mirendil H, Chun J. Lysophosphatidic Acid Signaling in the Nervous System. Vol. 85, Neuron. Cell Press; 2015. p. 669–82.
Gustin C, Van Steenbrugge M, Raes M. LPA modulates monocyte migration directly and via LPA-stimulated endothelial cells. American Journal of Physiology-Cell Physiology [Internet]. 2008;295(4):C905–14. Available from: https://www.physiology.org/doi/https://doi.org/10.1152/ajpcell.00544.2007.
Hayashi M, Okabe K, Kato K, Okumura M, Fukui R, Fukushima N, et al. Differential function of lysophosphatidic acid receptors in cell proliferation and migration of neuroblastoma cells. Cancer Lett. 2012Mar;316(1):91–6.
Article CAS PubMed Google Scholar
Suckau O, Gross I, Schrötter S, Yang F, Luo J, Wree A, et al. LPA 1, LPA 2, LPA 4, and LPA 6 receptor expression during mouse brain development. Dev Dyn. 2019;248(5):375–95.
Article CAS PubMed PubMed Central Google Scholar
Kremer KN, Buser A, Thumkeo D, Narumiya S, Jacobelli J, Pelanda R, et al. LPA suppresses T cell function by altering the cytoskeleton and disrupting immune synapse formation. Proceedings of the National Academy of Sciences [Internet]. 2022;119(15). Available from: https://pnas.org/doi/full/https://doi.org/10.1073/pnas.2118816119.
D’Souza K, Nzirorera C, Cowie AM, Varghese GP, Trivedi P, Eichmann TO, et al. Autotaxin-LPA signaling contributes to obesity-induced insulin resistance in muscle and impairs mitochondrial metabolism. J Lipid Res. 2018;59(10):1805–17.
Article PubMed PubMed Central Google Scholar
Zhao Y, Hasse S, Zhao C, Bourgoin SG. Targeting the autotaxin – Lysophosphatidic acid receptor axis in cardiovascular diseases. Biochem Pharmacol. 2019;1(164):74–81.
Tigyi G, Dacheux MA, Lin KH, Yue J, Norman D, Benyó Z, et al. Anti-cancer strategies targeting the autotaxin-lysophosphatidic acid receptor axis: is there a path forward? Vol. 40, Cancer and Metastasis Reviews. Springer; 2021. p. 3–5.
McDougall JJ, Reid AR. Joint Damage and Neuropathic Pain in Rats Treated With Lysophosphatidic Acid. Front Immunol. 2022;4:13.
Geraldo LHM, Spohr TCL de S, Amaral RF do, Fonseca ACC da, Garcia C, Mendes F de A, et al. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Vol. 6, Signal Transduction and Targeted Therapy. Springer Nature; 2021.
Valentine W, Motohashi N, Yanagida K, Tokuoka S, Kita Y, Takao S, et al. Abstract 2462 Regulation of phosphatidylcholine compositions in dystrophic and regenerating skeletal muscle. J Biol Chem. 2024;300(3): 106412.
Gallardo FS, Córdova-Casanova A, Brandan E. The linkage between inflammation and fibrosis in muscular dystrophies: The axis autotaxin–lysophosphatidic acid as a new therapeutic target? Vol. 15, Journal of Cell Communication and Signaling. Springer Science and Business Media B.V.; 2021. p. 317–34.
Córdova-Casanova A, Cruz-Soca M, Chun J, Casar JC, Brandan E. Activation of the ATX/LPA/LPARs axis induces a fibrotic response in skeletal muscle. Matrix Biol. 2022;1(109):121–39.
Moya IM, Halder G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Vol. 20, Nature Reviews Molecular Cell Biology. Nature Publishing Group; 2019. p. 211–26.
Gallardo FS, Córdova-Casanova A, Bock-Pereda A, Rebolledo DL, Ravasio A, Casar JC, et al. Denervation Drives YAP/TAZ Activation in Muscular Fibro/Adipogenic Progenitors. Int J Mol Sci. 2023 Mar 1;24(6).
Liu F, Lagares D, Moo Choi K, Stopfer L, Marinkovi A, Vrbanac V, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol [Internet]. 2015;308:344–57. Available from: www.ajplung.org.
Shihan MH, Sharma S, Cable C, Prathigudupu V, Chen A, Mattis AN, et al. AMPK stimulation inhibits YAP/TAZ signaling to ameliorate hepatic fibrosis. Sci Rep. 2024;14(1):5205.
Habshi T, Shelke V, Kale A, Lech M, Gaikwad AB. Hippo signaling in acute kidney injury to chronic kidney disease transition: Current understandings and future targets. Drug Discov Today. 2023;28(8):103649.
Meli VS, Atcha H, Veerasubramanian K, Nagalla RR, Luu TU, Chen EY, et al. YAP-mediated mechanotransduction tunes the macrophage inflammatory response [Internet]. Vol. 6, Sci. Adv. 2020. Available from: https://www.science.org.
Wang S, Zhou L, Ling L, Meng X, Chu F, Zhang S, et al. The Crosstalk Between Hippo-YAP Pathway and Innate Immunity. Front Immunol. 2020;11:323.
Cruz-Soca M, Faundez-Contreras J, Córdova-Casanova A, Gallardo FS, Bock-Pereda A, Chun J, et al. Activation of skeletal muscle FAPs by LPA requires the Hippo signaling via the FAK pathway. Matrix Biol. 2023;1(119):57–81.
Angelini C, Tasca E, Nascimbeni AC, Fanin M. Muscle fatigue, nnOS and muscle fiber atrophy in limb girdle muscular dystrophy [Internet]. Vol. XXXIII, Acta Myologica •. 2014. Available from: www.musclegenetable.fr.
Tidball JG. Regulation of muscle growth and regeneration by the immune system. Vol. 17, Nature Reviews Immunology. Nature Publishing Group; 2017. p. 165–78.
Pessina P, Cabrera D, Morales MG, Riquelme CA, Gutiérrez J, Serrano AL, et al. Novel and optimized strategies for inducing fibrosis in vivo: Focus on Duchenne Muscular Dystrophy. Skelet Muscle. 2014;4:7.
Smith LR, Barton ER. Regulation of fibrosis in muscular dystrophy. Vols. 68–69, Matrix Biology. Elsevier B.V.; 2018. p. 602–15.
Wynn TA. Cellular and molecular mechanisms of fibrosis. Vol. 214, Journal of Pathology. 2008. p. 199–210.
Alameddine HS, Morgan JE. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. Vol. 3, Journal of Neuromuscular Diseases. IOS Press; 2016. p. 455–73.
Minchew EC, Williamson NC, Readyoff AT, McClung JM, Spangenburg EE. Isometric skeletal muscle contractile properties in common strains of male laboratory mice. Front Physiol. 2022;4:13.
Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2012;150(4):780–91.
Article CAS PubMed PubMed Central Google Scholar
Córdova-Casanova A, Cruz-Soca M, Gallardo FS, Faundez-Contreras J, Bock-Pereda A, Chun J, et al. LPA-induced expression of CCN2 in muscular fibro/adipogenic progenitors (FAPs): Unraveling cellular communication networks. Matrix Biol. 2024;1(130):36–46.
Thompson R, Straub V. Limb-girdle muscular dystrophies - International collaborations for translational research. Vol. 12, Nature Reviews Neurology. Nature Publishing Group; 2016. p. 294–309.
Palma-Flores C, Cano-Martínez LJ, Fernández-Valverde F, Torres-Pérez I, de los Santos S, Hernández-Hernández JM, et al. Differential histological features and myogenic protein levels in distinct muscles of d-sarcoglycan null muscular dystrophy mouse model. J Mol Histol. 2023;54(4):405–13.
Dowling P, Swandulla D, Ohlendieck K. Cellular pathogenesis of Duchenne muscular dystrophy: progressive myofibre degeneration, chronic inflammation, reactive myofibrosis and satellite cell dysfunction. Eur J Transl Myol. 2023;33(4):11856.
Fanin M, Nascimbeni AC, Angelini C. Gender difference in limb-girdle muscular dystrophy: A muscle fiber morphometric study in 101 patients. Clin Neuropathol. 2014;33(3):179–85.
Brunetti B, Bacci B, Abbate JM, Tura G, Paciello O, Vaccaro E, et al. SGCD Missense Variant in a Lagotto Romagnolo Dog with Autosomal Recessively Inherited Limb-Girdle Muscular Dystrophy. Genes (Basel). 2023;14(8):1641.
Kato Y, Iwase M, Takagi K, Nishizawa T, Kanazawa H, Matsushita A, et al. Differential Myolysis of Myocardium and Skeletal Muscle in Hamsters With Dilated Cardiomyopathy Beneficial Protective Effect of Diltiazem. Circulation Journal [Internet]. 2006;70(11):1497–502. Available from: http://www.jstage.jst.go.jp/article/circj/70/11/70_11_1497/_article.
Panicucci C, Baratto S, Raffaghello L, Tonin P, D’Amico A, Tasca G, et al. Muscle inflammatory pattern in alpha- and gamma-sarcoglycanopathies. Clin Neuropathol. 2021;40(6):310–8.
Coley WD, Bogdanik L, Vila MC, Yu Q, Van Der Meulen JH, Rayavarapu S, et al. Effect of genetic background on the dystrophic phenotype in mdx mice. Hum Mol Genet. 2016;25(1):130–45.
Article CAS PubMed Google Scholar
Hammers DW, Hart CC, Matheny MK, Wright LA, Armellini M, Barton ER, et al. The D2.mdx mouse as a preclinical model of the skeletal muscle pathology associated with Duchenne muscular dystrophy. Sci Rep. 2020;10(1):14070.
Morales MG, Cabello-Verrugio C, Santander C, Cabrera D, Goldschmeding R, Brandan E. CTGF/CCN-2 over-expression can directly induce features of skeletal muscle dystrophy. Journal of Pathology. 2011;225(4):490–501.
Article CAS PubMed Google Scholar
Contreras O, Rebolledo DL, Oyarzún JE, Olguín HC, Brandan E. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res. 2016;364(3):647–60.
Article CAS PubMed Google Scholar
Gonzalez D, Contreras O, Rebolledo DL, Espinoza JP, Van Zundert B, Brandan E. ALS skeletal muscle shows enhanced TGF-β signaling, fibrosis and induction of fibro/adipogenic progenitor markers. PLoS One. 2017;12(5):e0177649.
Uezumi A, Fukada S, Yamamoto N, Ikemoto-Uezumi M, Nakatani M, Morita M, et al. Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis. 2014;5(4):e1186.
Gonzalez D, Rebolledo DL, Correa LM, Court FA, Cerpa W, Lipson KE, et al. The inhibition of CTGF/CCN2 activity improves muscle and locomotor function in a murine ALS model. Hum Mol Genet. 2018;27(16):2913–26.
Article CAS PubMed Google Scholar
Rebolledo DL, González D, Faundez-Contreras J, Contreras O, Vio CP, Murphy-Ullrich JE, et al. Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biol. 2019;1(82):20–37.
Morales MG, Gutierrez J, Cabello-Verrugio C, Cabrera D, Lipson KE, Goldschmeding R, et al. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet. 2013;22(24):4938–51.
Article CAS PubMed Google Scholar
Smith LR, Barton ER. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. Am J Physiol Cell Physiol [Internet]. 2014;306:889–98. Available from: www.ajpcell.org.
Lindsay A, Baumann CW, Rebbeck RT, Yuen SL, Southern WM, Hodges JS, et al. Mechanical factors tune the sensitivity of mdx muscle to eccentric strength loss and its protection by antioxidant and calcium modulators. Skelet Muscle. 2020;10(1):3.
Jia Y, Li Y, Xu XD, Tian Y, Shang H. Design and development of autotaxin inhibitors. Pharmaceuticals (Basel). 2021;14(11):1203.
Ninou I, Magkrioti C, Aidinis V. Autotaxin in pathophysiology and pulmonary fibrosis. Front Med (Lausanne). 2018;5:180.
Role of TGF-β/SMAD/YAP/TAZ signaling in skeletal muscle fibrosis American Journal of Physiology-Cell Physiology. https://doi.org/10.1152/ajpcell.00541.2024.
Judson RN, Gray SR, Walker C, Carroll AM, Itzstein C, Lionikas A, et al. Constitutive Expression of Yes-Associated Protein (Yap) in Adult Skeletal Muscle Fibres Induces Muscle Atrophy and Myopathy. PLoS One. 2013;8(3):e59622.
Barton ER, Morris L, Kawana M, Bish LT, Toursel T. Systemic administration of L-arginine benefits mdx skeletal muscle function. Muscle Nerve. 2005;32(6):751–60.
Article CAS PubMed Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Vol. 9, Nature Methods. 2012. p. 676–82.
Acuña MJ, Pessina P, Olguin H, Cabrera D, Vio CP, Bader M, et al. Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling. Hum Mol Genet. 2014;23(5):1237–49.
Contreras O, Villarreal M, Brandan E. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skelet Muscle. 2018;8(1):5.
Smith LR, Barton ER. SMASH - semi-automatic muscle analysis using segmentation of histology: A MATLAB application. Skelet Muscle. 2014;4:21.
Comments (0)