Neuromuscular electrical stimulation training induces myonuclear accretion and hypertrophy in mice without overt signs of muscle damage and regeneration

Lepper C, Partridge TA, Fan CM. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development. 2011Sep;138(17):3639–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development. 2011Sep;138(17):3625–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development. 2011Sep;138(17):3647–56.

Article  CAS  PubMed  Google Scholar 

Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J. 2021Oct;35(10): e21893.

Article  CAS  PubMed  Google Scholar 

Egner IM, Bruusgaard JC, Gundersen K. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle. Development. 2016Aug 15;143(16):2898–906.

Article  CAS  PubMed  Google Scholar 

McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, et al. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development. 2011Sep 1;138(17):3657–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goh Q, Millay DP. Requirement of myomakermediated stem cell fusion for skeletal muscle hypertrophy. eLife. 2017;6:e20007.

Article  PubMed  PubMed Central  Google Scholar 

Fukuda S, Kaneshige A, Kaji T, Noguchi YT, Takemoto Y, Zhang L, et al. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. Elife. 2019Sep;23(8): e48284.

Article  Google Scholar 

Noviello C, Kobon K, Delivry L, Guilbert T, Britto F, Julienne F, et al. RhoA within myofibers controls satellite cell microenvironment to allow hypertrophic growth. IScience. 2022;25(1):103616.

Article  CAS  PubMed  Google Scholar 

Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu H, et al. Regulation of the muscle fiber micro environment by activated satellite cells during hypertrophy. FASEB j. 2014Apr;28(4):1654–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reggiani C, Schiaffino S. Muscle hypertrophy and muscle strength: dependent or independent variables? A provocative review. Eur J Transl Myol. 2020Sep 30;30(3):9311.

Article  PubMed  PubMed Central  Google Scholar 

Murach KA, White SH, Wen Y, Ho A, Dupont-Versteegden EE, McCarthy JJ, et al. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice. Skelet Muscle. 2017Jul 10;7(1):14.

Article  PubMed  PubMed Central  Google Scholar 

Dungan CM, Murach KA, Frick KK, Jones SR, Crow SE, Englund DA, et al. Elevated myonuclear density during skeletal muscle hypertrophy in response to training is reversed during detraining. Am J Physiol, Cell Physiol. 2019May 1;316(5):C649–54.

Article  CAS  PubMed  Google Scholar 

Masschelein E, D’Hulst G, Zvick J, Hinte L, Soro-Arnaiz I, Gorski T, et al. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skelet Muscle. 2020Jul 9;10(1):21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goh Q, Song T, Petrany MJ, Cramer AA, Sun C, Sadayappan S, et al. Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle. Elife. 2019Apr;23(8): e44876.

Article  Google Scholar 

Englund DA, Figueiredo VC, Dungan CM, Murach KA, Peck BD, Petrosino JM, et al. Satellite Cell Depletion Disrupts Transcriptional Coordination and Muscle Adaptation to Exercise. Function (Oxf). 2021;2(1):zqaa033.

Article  PubMed  Google Scholar 

Katz B. The relation between force and speed in muscular contraction. J Physiol. 1939Jun 14;96(1):45–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murach KA, Mobley CB, Zdunek CJ, Frick KK, Jones SR, McCarthy JJ, et al. Muscle memory: myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. J Cachexia Sarcopenia Muscle. 2020Dec;11(6):1705–22.

Article  PubMed  PubMed Central  Google Scholar 

Gondin J, Guette M, Ballay Y, Martin A. Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc. 2005;37(8):1291–9.

Article  PubMed  Google Scholar 

Gondin J, Brocca L, Bellinzona E, D’Antona G, Maffiuletti NA, Miotti D, et al. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol. 2011Feb;110(2):433–50.

Article  CAS  PubMed  Google Scholar 

Gondin, Giannesini B, Vilmen C, Le Fur Y, Cozzone PJ, Bendahan D. Effects of a single bout of isometric neuromuscular electrical stimulation on rat gastrocnemius muscle: a combined functional, biochemical and MRI investigation. J Electromyogr Kinesiol. 2011 Jun;21(3):525–32.

Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 20 Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maddocks M, Nolan CM, Man WDC, Polkey MI, Hart N, Gao W, et al. Neuromuscular electrical stimulation to improve exercise capacity in patients with severe COPD: a randomised double-blind, placebo-controlled trial. Lancet Respir Med. 2016Jan;4(1):27–36.

Article  PubMed  Google Scholar 

Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K. Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci U S A. 2010Aug 24;107(34):15111–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winje IM, Bengtsen M, Eftestøl E, Juvkam I, Bruusgaard JC, Gundersen K. Specific labelling of myonuclei by an antibody against pericentriolar material 1 on skeletal muscle tissue sections. Acta Physiol (Oxf). 2018Aug;223(4): e13034.

Article  CAS  PubMed  Google Scholar 

Desgeorges T, Liot S, Lyon S, Bouvière J, Kemmel A, Trignol A, et al. Open-CSAM, a new tool for semi-automated analysis of myofiber cross-sectional area in regenerating adult skeletal muscle. Skelet Muscle. 2019;9(1):2.

Article  PubMed  PubMed Central  Google Scholar 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012Jun 28;9(7):676–82.

Article  CAS  PubMed  Google Scholar 

Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021Jan;18(1):100–6.

Article  CAS  PubMed  Google Scholar 

Legland D, Arganda-Carreras I, Andrey P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics. 2016Nov 15;32(22):3532–4.

Article  CAS  PubMed  Google Scholar 

Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149–60.

Article  PubMed  Google Scholar 

Viggars MR, Owens DJ, Stewart C, Coirault C, Mackey AL, Jarvis JC. PCM1 labeling reveals myonuclear and nuclear dynamics in skeletal muscle across species. Am J Physiol Cell Physiol. 2023Jan 1;324(1):C85-97.

Article  CAS  PubMed 

Comments (0)

No login
gif