Tropical lakes as a novel source of oleaginous yeasts with lipid profiles for biodiesel, oleochemical, and nutraceutical applications

Abaza AA, Shetaia YM, Sorour NM et al. (2024) Enhancing the biosynthesis of polyunsaturated fatty acids by Rhodotorula mucilaginosa and Lodderomyces elongisporus. Bioresour Bioprocess 11(1):39. https://doi.org/10.1186/s40643-024-00755-7

Article  PubMed Central  Google Scholar 

Abdel-Wahab MA, Elgorban AM, Bahkali AH (2023) Single cell oil of oleaginous marine microbes from Saudi Arabian mangroves as a potential feedstock for biodiesel production. J King Saud Univ—Sci 35(4):102615. https://doi.org/10.1016/j.jksus.2023.102615

Article  Google Scholar 

Abeln F, Chuck CJ (2021) The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 20(1):221. https://doi.org/10.1186/s12934-021-01712-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alam MS, Tanveer MS (2020) Conversion of biomass into biofuel: a cutting-edge technology. In: Bioreactors. Elsevier, pp 55–74, https://doi.org/10.1016/B978-0-12-821264-6.00005-X

Alexander MPC, Jonathan QRF, Soledad SBB et al. (2021) Lipid yields from oleaginous yeasts isolated from the north Peruvian Andes by culture media non-limiting nitrogen. J Appl Nat Sci 13(2):607–615. https://doi.org/10.31018/jans.v13i2.2670

Article  CAS  Google Scholar 

Anahas AMP, Prasannabalaji N, Muralitharan G (2024) Enhancing biodiesel production in anabaena sphaerica mbdu 105: exploring photo-, hetero-, and mixotrophic cultivation for biomass, lipid, and fuel properties. Biomass Convers Biorefinery: 1–20. https://doi.org/10.1007/s13399-024-05640-z

Anahas AMP, Muralitharan G (2015) Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (fame) profiles. Biores Technol 184:9–17

Article  CAS  Google Scholar 

Anahas AMP, Muralitharan G (2018) Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Convers Manage 157:423–437

Article  CAS  Google Scholar 

Anahas AMP, Prasannabalaji N, Muralitharan G (2025) Unlocking the potential of coal mine microalgae strains: enhanced biodiesel production and co\(_\) sequestration through cultivation optimization. Biomass Bioenerg 192:107489

Article  CAS  Google Scholar 

Angerbauer C, Siebenhofer M, Mittelbach M et al. (2008) Conversion of sewage sludge into lipids by lipomyces starkeyi for biodiesel production. Biores Technol 99(8):3051–3056

Article  CAS  Google Scholar 

Avato P, Tava A (2022) Rare fatty acids and lipids in plant oilseeds: occurrence and bioactivity. Phytochem Rev 21(2):401–428. https://doi.org/10.1007/s11101-021-09770-4

Article  CAS  Google Scholar 

Bai L, Cheng C, Sun ML et al. (2023) Production of single cell oil by two novel nonconventional yeast strains of Curvibasidium sp isolated from medicinal lichen. FEMS Yeast Res 23:foad026. https://doi.org/10.1093/femsyr/foad026

Article  CAS  PubMed  Google Scholar 

Barta DG, Coman V, Vodnar DC (2021) Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. Algal Res 58:102410

Article  Google Scholar 

Boekhout T, Amend AS, El Baidouri F et al. (2022) Trends in yeast diversity discovery. Fungal Divers 114(1):491–537. https://doi.org/10.1007/s13225-021-00494-6

Article  Google Scholar 

Caicedo-Bejarano LD, Osorio-Vanegas LS, Ramírez-Castrillón M et al. (2023) Water quality, heavy metals, and antifungal susceptibility to fluconazole of yeasts from water systems. Int J Environ Res Public Health 20(4):3428

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caporusso A, Capece A, De Bari I (2021) Oleaginous yeasts as cell factories for the sustainable production of microbial lipids by the valorization of agri-food wastes. Fermentation 7(2):50. https://doi.org/10.3390/fermentation7020050

Article  CAS  Google Scholar 

Carsanba E, Papanikolaou S, Erten H (2018) Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit Rev Biotechnol 38(8):1230–1243. https://doi.org/10.1080/07388551.2018.1472065

Article  CAS  PubMed  Google Scholar 

Chen Y, Qiu X, Yang J (2021) Comparing the in vitro antitumor, antioxidant and anti-inflammatory activities between two new very long chain polyunsaturated fatty acids, docosadienoic acid (dda) and docosatrienoic acid (dta), and docosahexaenoic acid (dha). Nutr Cancer 73(9):1697–1707

Article  CAS  PubMed  Google Scholar 

Da Cunha AC, Gomes LS, Godoy-Santos F et al. (2019) High-affinity transport, cyanide-resistant respiration, and ethanol production under aerobiosis underlying efficient high glycerol consumption by Wickerhamomyces anomalus. J Ind Microbiol Biotechnol 46(5):709–723. https://doi.org/10.1007/s10295-018-02119-5

Article  CAS  PubMed  Google Scholar 

Delbeke EI, Everaert J, Uitterhaegen E et al. (2016) Petroselinic acid purification and its use for the fermentation of new sophorolipids. AMB Express 6:1–9

Article  CAS  Google Scholar 

Díaz-Navarrete P, Marileo L, Madrid H et al. (2023) Lipid production from native oleaginous yeasts isolated from southern Chilean soil cultivated in industrial vinasse residues. Microorganisms 11(10):2516. https://doi.org/10.3390/microorganisms11102516

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobrowolski A, Mironczuk AM (2020) The influence of transketolase on lipid biosynthesis in the yeast Yarrowia lipolytica. Microbial Cell Factories 19(1):138. https://doi.org/10.1186/s12934-020-01398-x

Dobrowolski A, Mitula P, Rymowicz W et al. (2016) Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Biores Technol 207:237–243. https://doi.org/10.1016/j.biortech.2016.02.039

Article  CAS  Google Scholar 

Dritsas P, Aggelis G (2023) Studies on the co-metabolism of glucose and glycerol in the fungus Umbelopsis isabellina. Carbon Resour Convers 6(4):326–333. https://doi.org/10.1016/j.crcon.2023.03.008

Article  CAS  Google Scholar 

Erian AM, Egermeier M, Marx H et al. (2022) Insights into the glycerol transport of Yarrowia lipolytica. Yeast 39(5):323–336. https://doi.org/10.1002/yea.3702

Article  CAS  PubMed  Google Scholar 

Folch J, Lees M, Stanley GS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

Article  CAS  PubMed  Google Scholar 

Gan L, Park K, Chai J et al. (2022) Divergent evolution of extreme production of variant plant monounsaturated fatty acids. Proc Natl Acad Sci 119(30):e2201160119. https://doi.org/10.1073/pnas.2201160119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gientka I, Gadaszewska M, Blazejak S et al. (2017) Evaluation of lipid biosynthesis ability by Rhodotorula and Sporobolomyces strains in medium with glycerol. Eur Food Res Technol 243(2):275–286. https://doi.org/10.1007/s00217-016-2742-9

Article  CAS  Google Scholar 

Gostinčar C, Turk M, Trbuha T et al. (2008) Expression of fatty-acid-modifying enzymes in the halotolerant black yeast aureobasidium pullulans (de bary) g. arnaud under salt stress. Stud Mycol 61:51–59

Article  PubMed  PubMed Central  Google Scholar 

Grossart HP, Van den Wyngaert S, Kagami M et al. (2019) Fungi in aquatic ecosystems. Nat Rev Microbiol 17(6):339–354

Article  CAS  PubMed  Google Scholar 

Hassane AMA, Eldiehy KSH, Saha D et al. (2024) Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies. Arch Microbiol 206(7):338. https://doi.org/10.1007/s00203-024-04054-9

Article  CAS  PubMed  Google Scholar 

Huang XF, Liu JN, Lu LJ et al. (2016) Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides. Biores Technol 206:141–149. https://doi.org/10.1016/j.biortech.2016.01.073

Article  CAS  Google Scholar 

Kamal-Eldin A (2006) Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur J Lipid Sci Technol 108(12):1051–1061. https://doi.org/10.1002/ejlt.200600090

Article  CAS  Google Scholar 

Katsipoulaki M, Stappers MHT, Malavia-Jones D et al. (2024) Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 88(2):e00021-23. https://doi.org/10.1128/mmbr.00021-23

Comments (0)

No login
gif