Abaza AA, Shetaia YM, Sorour NM et al. (2024) Enhancing the biosynthesis of polyunsaturated fatty acids by Rhodotorula mucilaginosa and Lodderomyces elongisporus. Bioresour Bioprocess 11(1):39. https://doi.org/10.1186/s40643-024-00755-7
Article PubMed Central Google Scholar
Abdel-Wahab MA, Elgorban AM, Bahkali AH (2023) Single cell oil of oleaginous marine microbes from Saudi Arabian mangroves as a potential feedstock for biodiesel production. J King Saud Univ—Sci 35(4):102615. https://doi.org/10.1016/j.jksus.2023.102615
Abeln F, Chuck CJ (2021) The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 20(1):221. https://doi.org/10.1186/s12934-021-01712-1
Article CAS PubMed PubMed Central Google Scholar
Alam MS, Tanveer MS (2020) Conversion of biomass into biofuel: a cutting-edge technology. In: Bioreactors. Elsevier, pp 55–74, https://doi.org/10.1016/B978-0-12-821264-6.00005-X
Alexander MPC, Jonathan QRF, Soledad SBB et al. (2021) Lipid yields from oleaginous yeasts isolated from the north Peruvian Andes by culture media non-limiting nitrogen. J Appl Nat Sci 13(2):607–615. https://doi.org/10.31018/jans.v13i2.2670
Anahas AMP, Prasannabalaji N, Muralitharan G (2024) Enhancing biodiesel production in anabaena sphaerica mbdu 105: exploring photo-, hetero-, and mixotrophic cultivation for biomass, lipid, and fuel properties. Biomass Convers Biorefinery: 1–20. https://doi.org/10.1007/s13399-024-05640-z
Anahas AMP, Muralitharan G (2015) Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (fame) profiles. Biores Technol 184:9–17
Anahas AMP, Muralitharan G (2018) Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Convers Manage 157:423–437
Anahas AMP, Prasannabalaji N, Muralitharan G (2025) Unlocking the potential of coal mine microalgae strains: enhanced biodiesel production and co\(_\) sequestration through cultivation optimization. Biomass Bioenerg 192:107489
Angerbauer C, Siebenhofer M, Mittelbach M et al. (2008) Conversion of sewage sludge into lipids by lipomyces starkeyi for biodiesel production. Biores Technol 99(8):3051–3056
Avato P, Tava A (2022) Rare fatty acids and lipids in plant oilseeds: occurrence and bioactivity. Phytochem Rev 21(2):401–428. https://doi.org/10.1007/s11101-021-09770-4
Bai L, Cheng C, Sun ML et al. (2023) Production of single cell oil by two novel nonconventional yeast strains of Curvibasidium sp isolated from medicinal lichen. FEMS Yeast Res 23:foad026. https://doi.org/10.1093/femsyr/foad026
Article CAS PubMed Google Scholar
Barta DG, Coman V, Vodnar DC (2021) Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. Algal Res 58:102410
Boekhout T, Amend AS, El Baidouri F et al. (2022) Trends in yeast diversity discovery. Fungal Divers 114(1):491–537. https://doi.org/10.1007/s13225-021-00494-6
Caicedo-Bejarano LD, Osorio-Vanegas LS, Ramírez-Castrillón M et al. (2023) Water quality, heavy metals, and antifungal susceptibility to fluconazole of yeasts from water systems. Int J Environ Res Public Health 20(4):3428
Article CAS PubMed PubMed Central Google Scholar
Caporusso A, Capece A, De Bari I (2021) Oleaginous yeasts as cell factories for the sustainable production of microbial lipids by the valorization of agri-food wastes. Fermentation 7(2):50. https://doi.org/10.3390/fermentation7020050
Carsanba E, Papanikolaou S, Erten H (2018) Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit Rev Biotechnol 38(8):1230–1243. https://doi.org/10.1080/07388551.2018.1472065
Article CAS PubMed Google Scholar
Chen Y, Qiu X, Yang J (2021) Comparing the in vitro antitumor, antioxidant and anti-inflammatory activities between two new very long chain polyunsaturated fatty acids, docosadienoic acid (dda) and docosatrienoic acid (dta), and docosahexaenoic acid (dha). Nutr Cancer 73(9):1697–1707
Article CAS PubMed Google Scholar
Da Cunha AC, Gomes LS, Godoy-Santos F et al. (2019) High-affinity transport, cyanide-resistant respiration, and ethanol production under aerobiosis underlying efficient high glycerol consumption by Wickerhamomyces anomalus. J Ind Microbiol Biotechnol 46(5):709–723. https://doi.org/10.1007/s10295-018-02119-5
Article CAS PubMed Google Scholar
Delbeke EI, Everaert J, Uitterhaegen E et al. (2016) Petroselinic acid purification and its use for the fermentation of new sophorolipids. AMB Express 6:1–9
Díaz-Navarrete P, Marileo L, Madrid H et al. (2023) Lipid production from native oleaginous yeasts isolated from southern Chilean soil cultivated in industrial vinasse residues. Microorganisms 11(10):2516. https://doi.org/10.3390/microorganisms11102516
Article CAS PubMed PubMed Central Google Scholar
Dobrowolski A, Mironczuk AM (2020) The influence of transketolase on lipid biosynthesis in the yeast Yarrowia lipolytica. Microbial Cell Factories 19(1):138. https://doi.org/10.1186/s12934-020-01398-x
Dobrowolski A, Mitula P, Rymowicz W et al. (2016) Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Biores Technol 207:237–243. https://doi.org/10.1016/j.biortech.2016.02.039
Dritsas P, Aggelis G (2023) Studies on the co-metabolism of glucose and glycerol in the fungus Umbelopsis isabellina. Carbon Resour Convers 6(4):326–333. https://doi.org/10.1016/j.crcon.2023.03.008
Erian AM, Egermeier M, Marx H et al. (2022) Insights into the glycerol transport of Yarrowia lipolytica. Yeast 39(5):323–336. https://doi.org/10.1002/yea.3702
Article CAS PubMed Google Scholar
Folch J, Lees M, Stanley GS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509
Article CAS PubMed Google Scholar
Gan L, Park K, Chai J et al. (2022) Divergent evolution of extreme production of variant plant monounsaturated fatty acids. Proc Natl Acad Sci 119(30):e2201160119. https://doi.org/10.1073/pnas.2201160119
Article CAS PubMed PubMed Central Google Scholar
Gientka I, Gadaszewska M, Blazejak S et al. (2017) Evaluation of lipid biosynthesis ability by Rhodotorula and Sporobolomyces strains in medium with glycerol. Eur Food Res Technol 243(2):275–286. https://doi.org/10.1007/s00217-016-2742-9
Gostinčar C, Turk M, Trbuha T et al. (2008) Expression of fatty-acid-modifying enzymes in the halotolerant black yeast aureobasidium pullulans (de bary) g. arnaud under salt stress. Stud Mycol 61:51–59
Article PubMed PubMed Central Google Scholar
Grossart HP, Van den Wyngaert S, Kagami M et al. (2019) Fungi in aquatic ecosystems. Nat Rev Microbiol 17(6):339–354
Article CAS PubMed Google Scholar
Hassane AMA, Eldiehy KSH, Saha D et al. (2024) Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies. Arch Microbiol 206(7):338. https://doi.org/10.1007/s00203-024-04054-9
Article CAS PubMed Google Scholar
Huang XF, Liu JN, Lu LJ et al. (2016) Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides. Biores Technol 206:141–149. https://doi.org/10.1016/j.biortech.2016.01.073
Kamal-Eldin A (2006) Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur J Lipid Sci Technol 108(12):1051–1061. https://doi.org/10.1002/ejlt.200600090
Katsipoulaki M, Stappers MHT, Malavia-Jones D et al. (2024) Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 88(2):e00021-23. https://doi.org/10.1128/mmbr.00021-23
Comments (0)