Novel cell factory for the production of 24-epi-ergosterol, an un-natural semi-synthetic precursor for the production of brassinolide in

Anastasia M, Allevi P, Ciuffreda P (1983) Stereoselective synthesis of crinosterol [(22E,24S)-ergosta-5,22-dien-3β-ol]. Journal of the Chemical Society-Perkin Transactions 1:2365–2367. https://doi.org/10.1039/p19830002365

Article  Google Scholar 

Blazeck J, Hill, Andrew, Liu (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 3131. https://doi.org/10.1038/ncomms4131

Bolker HI (1967) Crinosterol: a unique sterol from a comatulid crinoid. Nat 213:905–906. https://doi.org/10.1038/213905a0

Article  CAS  Google Scholar 

Chai L, Che JX, Qi QS, Hou J (2024) Metabolic engineering for squalene production: advances and perspectives. J Agric Food Chem 72:27715–27725. https://doi.org/10.1021/acs.jafc.4c09608

Article  PubMed  CAS  Google Scholar 

Chen X, Fang ZY (2015) Application status and development prospect of plant growth regulator Brassinolide in agriculture. World Pestic 37:37–42. https://doi.org/10.16201/j.cnki.cn31-1827/tq.2015.02.08

Article  CAS  Google Scholar 

Cui ZY, Zheng HH, Zhang JH et al (2021) A CRISPR/Cas9-mediated, homology-independent tool developed for targeted genome integration in Yarrowia lipolytica. Appl Environ Microbiol 87:e02666-e2720. https://doi.org/10.1128/aem.02666-20

Article  PubMed  PubMed Central  CAS  Google Scholar 

Davies BSJ, Rine J (2006) A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae. Genetics 174:191–201. https://doi.org/10.1534/genetics.106.059964

Article  PubMed  PubMed Central  CAS  Google Scholar 

Donald KA, Hampton RY, Fritz IB (1997) Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 63:3341–3344. https://doi.org/10.1128/aem.63.9.3341-3344.1997

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dong TY, Zhou X, Hou Z-J et al (2025) Multiple strategies enhance 7-dehydrocholesterol production from kitchen waste by engineered Yarrowia lipolytica. J Agric Food Chem 73:693–705. https://doi.org/10.1021/acs.jafc.4c09552

Article  PubMed  CAS  Google Scholar 

Elsharawy H, Refat M (2024) Yarrowia lipolytica : A promising microbial platform for sustainable squalene production. Biocatal Agric Biotechnol 57:103130. https://doi.org/10.1016/j.bcab.2024.103130

Article  CAS  Google Scholar 

Gao SL, Tong YY, Zhu L et al (2017) Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng 41:192–201. https://doi.org/10.1016/j.ymben.2017.04.004

Article  PubMed  CAS  Google Scholar 

Garrido Auñón F, Puente Moreno J, García Pastor ME et al (2024) Brassinosteroids: an innovative compound family that could affect the growth, ripening, quality, and postharvest storage of fleshy fruits. Plants 13:3082. https://doi.org/10.3390/plants13213082

Article  PubMed  PubMed Central  CAS  Google Scholar 

Grove MD, Spencer GF, Rohwedder WK et al (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217. https://doi.org/10.1038/281216a0

Article  CAS  Google Scholar 

Gu YH, Jiao X, Ye LD, Yu H (2021) Metabolic engineering strategies for de novo biosynthesis of sterols and steroids in yeast. Bioresour Bioproc 8:110. https://doi.org/10.1186/s40643-021-00460-9

Article  Google Scholar 

Guo Q, Shi TQ, Peng QQ et al (2022) Harnessing Yarrowia lipolytica peroxisomes as a subcellular factory for α-humulene overproduction. J Agric Food Chem 69:13831–13837. https://doi.org/10.1021/acs.jafc.1c05897

Article  CAS  Google Scholar 

He XP, Zhang BR, Tan HR (2003) Overexpression of a sterol C-24(28) reductase increases ergosterol production in Saccharomyces cerevisiae. Biotechnol Lett 25:773–778

Article  PubMed  CAS  Google Scholar 

Hu ZH, He B, Ma L et al (2017) Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian J Microbiol 57:270–277. https://doi.org/10.1007/s12088-017-0657-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hurski AL, Ermolovich YuV, Zhabinskii VN, Khripach VA (2015) The development and use of a general route to brassinolide, its biosynthetic precursors, metabolites and analogues. Org Biomol Chem 13:1446–1452. https://doi.org/10.1039/C4OB02197E

Article  PubMed  CAS  Google Scholar 

Jensen Pergakes K, Guo ZM, Giattina M et al (2001) Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae. J Bacteriol 183:4950–4957. https://doi.org/10.1128/JB.183.17.4950-4957.2001

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jiang YQ, Sun ZJ, Lu KX et al (2023) Manipulation of sterol homeostasis for the production of 24-epi-ergosterol in industrial yeast. Nat Commun 14:437. https://doi.org/10.1038/s41467-023-36007-z

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kasaragod P, Midekessa GB, Sridhar S et al (2017) Structural enzymology comparisons of multifunctional enzyme, type-1 (Mfe 1): the flexibility of its dehydrogenase part. FEBS Open Bio 7:1830–1842. https://doi.org/10.1002/2211-5463.12337

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ledesma Amaro R, Nicaud J-M (2016) Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica. Trends Biotechnol 34:798–809. https://doi.org/10.1016/j.tibtech.2016.04.010

Article  PubMed  CAS  Google Scholar 

Liu J, Xia JunJie, Nie KaiLi et al (2019) Outline of the biosynthesis and regulation of ergosterol in yeast. World J Microbiol Biotechnol 35:98. https://doi.org/10.1007/s11274-019-2673-2

Article  PubMed  Google Scholar 

Liu H, Wang F, Li D, Xu P (2020a) Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica. Biores Technol 317:123991. https://doi.org/10.1016/j.biortech.2020.123991

Article  CAS  Google Scholar 

Liu S, Liu ZJ, Wei LJ, Hua Q (2020b) Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolyticain. J Biotechnol 319:74–81. https://doi.org/10.1016/j.jbiotec.2020.06.005

Article  PubMed  CAS  Google Scholar 

Liu Q, Zhang G, Su LQ et al (2023) Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A. Green Chem 25:7988–7997. https://doi.org/10.1039/D3GC01661G

Article  CAS  Google Scholar 

Liu ZY, Huang MK, Chen H et al (2024) Metabolic engineering of Yarrowia lipolytica for high-level production of squalene. Biores Technol 394:130233. https://doi.org/10.1016/j.biortech.2023.130233

Article  CAS  Google Scholar 

Ma BX, Ke X, Tang XL et al (2018) Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering. World J Microbiol Biotechnol 34:55. https://doi.org/10.1007/s11274-018-2440-9

Article  PubMed  CAS  Google Scholar 

Ma YS, Liu N, Greisen P et al (2022) Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nat Commun 13:572. https://doi.org/10.1038/s41467-022-28277-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ma YS, Shang Y, Stephanopoulos G (2024) Engineering peroxisomal biosynthetic pathways for maximization of triterpene production in Yarrowia lipolytica. Proc Natl Acad Sci U S A 121:e2314798121. https://doi.org/10.1073/pnas.2314798121

Article  PubMed 

Comments (0)

No login
gif