Henrique D, Abranches E, Verrier L, Storey KG. Neuromesodermal progenitors and the making of the spinal cord. Dev. 2015;142(7):2864–75.
Gouti M, Delile J, Stamataki D, Wymeersch FJ, Huang Y, Kleinjung J, et al. A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev Cell. 2017;41(243–261): e7.
Sambasivan R, Steventon B. Neuromesodermal progenitors: A basis for robust axial patterning in development and evolution. Front Cell Dev Biol. 2021;8:607516.
Article PubMed PubMed Central Google Scholar
Olmsted ZT, Paluh JL. Stem cell neurodevelopmental solutions for restorative treatments of the human trunk and spine. Front Cell Neurosci. 2021;15:667590.
Article CAS PubMed PubMed Central Google Scholar
Tzouanacou E, Wegener A, Wymeersch FJ, Wilson V, Nicolas J-F. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell. 2009;17:365–76.
Article CAS PubMed Google Scholar
Attardi A, Fulton T, Florescu M, Shah G, Muresan L, Lenz MO, et al. Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Dev. 2018;145:dev166728.
Cooper F, Gentsch GE, Mitter R, Bouissou C, Healy LE, Rodriguez AH, et al. Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors in vitro. Stem Cell Rep. 2022;17:894–910.
Cambray N, Wilson V. Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development. 2002;129(20):4855–66.
Article CAS PubMed Google Scholar
Gouti M, Tsakiridis A, Wymeersch FJ, Huang Y, Kleinjung J. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 2014;12:1001937.
Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R, et al. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Dev. 2014;141:1209–21.
Turner DA, Hayward PC, Baillie-johnson P, Rue P, Broome R, Faunes F. Wnt / β -catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. Dev. 2014;141:4243–53.
Tsakiridis A, Wilson V. Assessing the bipotency of in vitro-derived neuromesodermal progenitors. F100Res. 2015;4:100.
Olmsted ZT, Stigliano C, Badri A, Zhang F, Williams A, Koffas MAG, et al. Fabrication of homotypic neural ribbons as a multiplex platform optimized for spinal cord delivery. Sci Rep. 2020;10:12939.
Article CAS PubMed PubMed Central Google Scholar
Olmsted ZT, Stigliano C, Scimemi A, Wolfe T, Cibelli J, Horner PJ, et al. Transplantable human motor networks as a neuron-directed strategy for spinal cord injury. iScience. 2021;24(8):102827.
Article CAS PubMed PubMed Central Google Scholar
Olmsted ZT, Paluh JL. Co-development of central and peripheral neurons with trunk mesendoderm in human elongating multi-lineage organized gastruloids. Nat Commun. 2021;12:3020.
Article CAS PubMed PubMed Central Google Scholar
Paredes-Espinosa MB, Paluh JL. Human stem cell–derived neurons and neural circuitry therapeutics: Next frontier in spinal cord injury repair. Exp Biol Med. 2022;247:2142–51.
Olmsted ZT, Stigliano C, Marzullo B, Cibelli J, Horner PJ, Paluh JL. Fully Characterized Mature Human iPS- and NMP-Derived Motor Neurons Thrive Without Neuroprotection in the Spinal Contusion Cavity. Front Cell Neurosci. 2022;15:725195.
Article PubMed PubMed Central Google Scholar
Imuta Y, Kiyonari H, Jang C, Behringer RR, Sasaki H. Generation of knock-in mice that express nuclear enhanced green fluorescent protein and tamoxifen-inducible Cre recombinase in the notochord from Foxa2 and T loci. Genesis. 2013;51:210–8.
Article CAS PubMed PubMed Central Google Scholar
Kuzmicz-Kowalska K, Kicheva A. Regulation of size and scale in vertebrate spinal cord development. Wiley Interdiscip Rev Dev Biol. 2021;10: e383.
Xu JH, Yao Y, Yao F, Chen J, Li M, Yang X, et al. Generation of functional posterior spinal motor neurons from hPSCs-derived human spinal cord neural progenitor cells. bioRxiv. 2022;109:3252.
Wang H, Li D, Zhai Z, Zhang X, Huang W, Chen X, et al. Characterization and therapeutic application of mesenchymal stem cells with neuromesodermal origin from human pluripotent stem cells. Theranostics. 2019;9:1683–97.
Article CAS PubMed PubMed Central Google Scholar
Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell. 2010;7:718–29.
Article CAS PubMed PubMed Central Google Scholar
Lippmann ES, Williams CE, Ruhl DA, Estevez-Silva MC, Chapman ER, Coon JJ, et al. Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm. Stem Cell Rep. 2015;4:632–44.
Kirino K, Nakahata T, Taguchi T, Saito MK. Efficient derivation of sympathetic neurons from human pluripotent stem cells with a defined condition. Sci Rep. 2018;8:12865.
Article PubMed PubMed Central Google Scholar
Thau L, Reddy V, Singh P. Anatomy, central nervous system. BMJ. 2022;1:478–478.
Javed K, Daly DT. Neuroanatomy. Lower Motor Neuron Lesion. StatPearls: StatPearls Publishing; 2021.
Poleganov MA, Eminli S, Beissert T, Herz S, Il MJ, Goldmann J, et al. Efficient Reprogramming of Human Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for Reprogramming and Immune Evasion. Hum Gen Ther. 2015;26(11):751–66.
Şenkal S, Bartu T, Derya H, Hatice S, Şişli B, Burçin A, et al. Human ESC - derived Neuromesodermal Progenitors ( NMPs ) Successfully Differentiate into Mesenchymal Stem Cells ( MSCs ). Stem Cell Rev Rep. 2022;18(1):278–93.
Wimasis (2016) WimNeuron: Neurite Outgrowth Quantification Image Analysis Solution.
Ozcan M, Yilmaz B, King WM, Carpenter DO. Hippocampal long-term potentiation (LTP) is reduced by a coplanar PCB congener. Neurotox. 2004;25:981–8.
Ates T, Oncul M, Dilsiz P, Topcu IC, Civas CC, Alp MI, et al. Inactivation of Magel2 suppresses oxytocin neurons through synaptic excitation-inhibition imbalance. Neurobiol Dis. 2019;121:58–64.
Article CAS PubMed Google Scholar
Sağraç D, Şenkal S, Hayal TB, Demirci S, Şişli HB, Asutay AB, et al. Protective role of Cytoglobin and Neuroglobin against the Lipopolysaccharide (LPS)-induced inflammation in Leydig cells ex vivo. Reprod Biol. 2022;22: 100595.
Şişli HB, Şenkal S, Hayal TB, Bulut E, Doğan A. Regulatory role of apelin receptor signaling in migration and differentiation of mouse embryonic stem cell-derived mesoderm cells and mesenchymal stem/stromal cells. Hum Cell. 2023;36(2):612–30.
Şişli HB, Hayal TB, Şenkal S, Kıratlı B, Sağraç D, Seçkin S, et al. Apelin Receptor Signaling Protects GT1–7 GnRH Neurons Against Oxidative Stress In Vitro. Cell Mol Neurobiol. 2020;42(3):753–75.
Article PubMed PubMed Central Google Scholar
Dobin A, Gingeras TR. Mapping RNA-seq reads with STAR. Curr Protoc Bioinform. 2015;51:11–4.
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.
Comments (0)