Haller S, Haacke EM, Thurnher MM, Barkhof F (2021) Susceptibility-weighted imaging: technical essentials and clinical neurologic applications. Radiol Apr 299(1):3–26. https://doi.org/10.1148/radiol.2021203071
Lin F, Prince MR, Spincemaille P, Wang Y (2019) Patents on quantitative susceptibility mapping (QSM) of tissue magnetism. Recent Pat Biotechnol 13(2):90–113. https://doi.org/10.2174/1872208313666181217112745
Article PubMed CAS Google Scholar
Ruetten PPR, Gillard JH, Graves MJ (2019) Introduction to quantitative susceptibility mapping and susceptibility weighted imaging. Br J Radiol Sep 92(1101):20181016. https://doi.org/10.1259/bjr.20181016
Hageman G, Hof J, Nihom J, Susceptibility-Weighted MRI (2022) Microbleeds in mild traumatic brain injury: prediction of posttraumatic complaints?? Eur Neurol 85(3):177–185. https://doi.org/10.1159/000521389
Article PubMed CAS Google Scholar
Di Ieva A, Lam T, Alcaide-Leon P, Bharatha A, Montanera W, Cusimano MD (2015) Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives. J Neurosurg Dec 123(6):1463–1475. https://doi.org/10.3171/2015.1.Jns142349
Grabner G, Dal-Bianco A, Schernthaner M, Vass K, Lassmann H, Trattnig S (2011) Analysis of multiple sclerosis lesions using a fusion of 3.0 T FLAIR and 7.0 T SWI phase: FLAIR SWI. J Magn Reson Imaging Mar 33(3):543–549. https://doi.org/10.1002/jmri.22452
Ellis JA, Barrow DL (2017) Supratentorial cavernous malformations. Handb Clin Neurol 143:283–289. https://doi.org/10.1016/b978-0-444-63640-9.00027-8
Rigamonti D, Hadley MN, Drayer BP et al (1988) Cerebral cavernous malformations. Incidence and Familial occurrence. N Engl J Med Aug 11(6):343–347. https://doi.org/10.1056/nejm198808113190605
Otten P, Pizzolato GP, Rilliet B, Berney J (1989) [131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies]. Neurochirurgie.;35(2):82– 3, 128– 31. A propos de 131 cas d’angiomes caverneux (cavernomes) du s.n.c., repérés par l’analyse rétrospective de 24 535 autopsies
Labauge P, Denier C, Bergametti F, Tournier-Lasserve E (2007) Genetics of cavernous Angiomas. Lancet Neurol Mar 6(3):237–244. https://doi.org/10.1016/s1474-4422(07)70053-4
Kleinschmidt-DeMasters BK, Lillehei KO (2016) Radiation-Induced cerebral vascular malformations at biopsy. J Neuropathol Exp Neurol Nov 1(11):1081–1092. https://doi.org/10.1093/jnen/nlw085
Rosenow F, Alonso-Vanegas MA, Baumgartner C et al (2013) Cavernoma-related epilepsy: review and recommendations for management–report of the surgical task force of the ILAE commission on therapeutic strategies. Epilepsia Dec 54(12):2025–2035. https://doi.org/10.1111/epi.12402
Gross BA, Lin N, Du R, Day AL (2011) The natural history of intracranial cavernous malformations. Neurosurg Focus Jun 30(6):E24. https://doi.org/10.3171/2011.3.Focus1165
Gross BA, Du R, Orbach DB, Scott RM, Smith ER (2016) The natural history of cerebral cavernous malformations in children. J Neurosurg Pediatr Feb 17(2):123–128. https://doi.org/10.3171/2015.2.Peds14541
Riech S, Kallenberg K, Moerer O et al (Sep 2015) The pattern of brain microhemorrhages after severe lung failure resembles the one seen in High-Altitude cerebral edema. Crit Care Med 43(9):e386–e389. https://doi.org/10.1097/ccm.0000000000001150
Dixon L, McNamara C, Gaur P et al (2020) Cerebral microhaemorrhage in COVID-19: a critical illness related phenomenon? Stroke Vasc Neurol Dec 5(4):315–322. https://doi.org/10.1136/svn-2020-000652
Fanou EM, Coutinho JM, Shannon P et al (2017) Critical Illness-Associated cerebral microbleeds. Stroke Apr 48(4):1085–1087. https://doi.org/10.1161/strokeaha.116.016289
Hackett PH, Yarnell PR, Weiland DA, Reynard KB (Mar 2019) Acute and evolving MRI of High-Altitude cerebral edema: microbleeds, edema, and pathophysiology. AJNR Am J Neuroradiol 40(3):464–469. https://doi.org/10.3174/ajnr.A5897
Kallenberg K, Dehnert C, Dörfler A et al (2008) Microhemorrhages in nonfatal high-altitude cerebral edema. J Cereb Blood Flow Metab Sep 28(9):1635–1642. https://doi.org/10.1038/jcbfm.2008.55
Lersy F, Willaume T, Brisset JC et al (2021) Critical illness-associated cerebral microbleeds for patients with severe COVID-19: etiologic hypotheses. J Neurol Aug 268(8):2676–2684. https://doi.org/10.1007/s00415-020-10313-8
Tsitsikas DA, Vize J, Abukar J (2020) Fat embolism syndrome in sickle cell disease. J Clin Med Nov 8(11). https://doi.org/10.3390/jcm9113601
Mohammed-Hadj S, Colard M, Delpierre I, Taccone F, Lolli VE (2023) Fat emboli and critical illness-associated cerebral microbleeds (CICMs) in a patient with sickle cell disease: do these 2 entities coexist? Radiol Case Rep May 18(5):1978–1981. https://doi.org/10.1016/j.radcr.2023.02.044
Poels MM, Ikram MA, van der Lugt A et al (2011) Incidence of cerebral microbleeds in the general population: the Rotterdam scan study. Stroke Mar 42(3):656–661. https://doi.org/10.1161/strokeaha.110.607184
Yeh SJ, Tang SC, Tsai LK, Jeng JS (2014) Pathogenetical subtypes of recurrent intracerebral hemorrhage: designations by SMASH-U classification system. Stroke Sep 45(9):2636–2642. https://doi.org/10.1161/strokeaha.114.005598
Roob G, Schmidt R, Kapeller P, Lechner A, Hartung HP, Fazekas F (1999) MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurol Mar 23(5):991–994. https://doi.org/10.1212/wnl.52.5.991
Blitstein MK, Tung GA (2007) MRI of cerebral microhemorrhages. AJR Am J Roentgenol Sep 189(3):720–725. https://doi.org/10.2214/ajr.07.2249
Yates PA, Villemagne VL, Ellis KA, Desmond PM, Masters CL, Rowe CC (2014) Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front Neurol Jan 6 4:205. https://doi.org/10.3389/fneur.2013.00205
Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jäger HR, Barkhof F (2018) Cerebral microbleeds: imaging and clinical significance. Radiol Apr 287(1):11–28. https://doi.org/10.1148/radiol.2018170803
Viswanathan A, Chabriat H (2006) Cerebral microhemorrhage. Stroke Feb 37(2):550–555. https://doi.org/10.1161/01.Str.0000199847.96188.12
Aronow WS (2017) Hypertension and cognitive impairment. Ann Transl Med Jun 5(12):259. https://doi.org/10.21037/atm.2017.03.99
Gez S, İnce B, Tütüncü M et al (2022) Prevalence of clinical manifestations and neuroimaging features in cerebral small vessel disease. Clin Neurol Neurosurg Jun 217:107244. https://doi.org/10.1016/j.clineuro.2022.107244
Wardlaw JM, Smith C, Dichgans M (2019) Small vessel disease: mechanisms and clinical implications. Lancet Neurol Jul 18(7):684–696. https://doi.org/10.1016/s1474-4422(19)30079-1
Greenberg SM, Vernooij MW, Cordonnier C et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol Feb 8(2):165–174. https://doi.org/10.1016/s1474-4422(09)70013-4
Shi Y, Wardlaw JM (2016) Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol Sep 1(3):83–92. https://doi.org/10.1136/svn-2016-000035
Lee J, Sohn EH, Oh E, Lee AY (2018) Characteristics of cerebral microbleeds. Dement Neurocogn Disord Sep 17(3):73–82. https://doi.org/10.12779/dnd.2018.17.3.73
Christie J, Robinson CM, Pell AC, McBirnie J, Burnett R (1995) Transcardiac echocardiography during invasive intramedullary procedures. J Bone Joint Surg Br May 77(3):450–455
Stein PD, Yaekoub AY, Matta F, Kleerekoper M (2008) Fat embolism syndrome. Am J Med Sci Dec 336(6):472–477. https://doi.org/10.1097/MAJ.0b013e318172f5d2
Giyab O, Balogh B, Bogner P, Gergely O, Tóth A (2021) Microbleeds show a characteristic distribution in cerebral fat embolism. Insights Imaging Mar 31(1):42. https://doi.org/10.1186/s13244-021-00988-6
Rothberg DL, Makarewich CA (2019) Fat embolism and fat embolism syndrome. J Am Acad Orthop Surg Apr 15(8):e346–e355. https://doi.org/10.5435/jaaos-d-17-00571
Kellogg RG, Fontes RB, Lopes DK (2013) Massive cerebral involvement in fat embolism syndrome and intracranial pressure management. J Neurosurg Nov 119(5):1263–1270. https://doi.org/10.3171/2013.7.Jns13363
Comments (0)