Machine learning radiomics for H3K27M mutation prediction in gliomas: A systematic review and meta-analysis

Guo X, Shi Y, Liu D et al (2023) Clinical updates on gliomas and implications of the 5th edition of the WHO classification of central nervous system tumors. Front Oncol 13:1131642. https://doi.org/10.3389/fonc.2023.1131642

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostrom QT, Gittleman H, Liao P et al (2017) CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol 19:v1–v88. https://doi.org/10.1093/neuonc/nox158

Article  PubMed  PubMed Central  Google Scholar 

Pellerino A, Caccese M, Padovan M et al (2022) Epidemiology, risk factors, and prognostic factors of gliomas. Clin Transl Imaging. https://doi.org/10.1007/s40336-022-00489-6

Article  Google Scholar 

Yan J, Zhang B, Zhang S et al (2021) Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precis Oncol 5:72. https://doi.org/10.1038/s41698-021-00205-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saratsis AM, Knowles T, Petrovic A, Nazarian J (2024) H3K27M mutant glioma: Disease definition and biological underpinnings. Neuro Oncol 26:S92–S100. https://doi.org/10.1093/neuonc/noad164

Article  PubMed  Google Scholar 

Hu XM, Nie XY, Xu KL et al (2022) H3K27M mutation doesn’t mean worse prognosis in old patients. Front Oncol 12:912166. https://doi.org/10.3389/fonc.2022.912166

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voon HPJ, Hii L, Garvie A et al (2023) Pediatric glioma histone H3.3 K27M/G34R mutations drive abnormalities in PML nuclear bodies. Genome Biol 24:284. https://doi.org/10.1186/s13059-023-03122-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vallero SG, Bertero L, Morana G et al (2022) Pediatric diffuse midline glioma H3K27- altered: A complex clinical and biological landscape behind a neatly defined tumor type. Front Oncol 12:1082062. https://doi.org/10.3389/fonc.2022.1082062

Article  CAS  PubMed  Google Scholar 

Zhuo Z, Qu L, Zhang P et al (2021) Prediction of H3K27M-mutant brainstem glioma by amide proton transfer-weighted imaging and its derived radiomics. Eur J Nucl Med Mol Imaging 48:4426–4436. https://doi.org/10.1007/s00259-021-05455-4

Article  CAS  PubMed  Google Scholar 

RaissiDehkordi N, RaissiDehkordi N, KarimiToudeshki K, Farjoo MH (2024) Artificial intelligence in diagnosis of long QT syndrome: a review of current state, challenges, and future perspectives. Mayo Clinic Proc: Digital Health 2:21–31. https://doi.org/10.1016/j.mcpdig.2023.11.003

Article  Google Scholar 

Levy AS, Bhatia S, Merenzon MA et al (2024) Exploring the landscape of machine learning applications in neurosurgery: A bibliometric analysis and narrative review of trends and future directions. World Neurosurg 181:108–115. https://doi.org/10.1016/j.wneu.2023.10.042

Article  PubMed  Google Scholar 

Warman A, Kalluri AL, Azad TD (2023) Machine learning predictive models in neurosurgery: an appraisal based on the TRIPOD guidelines. Systematic review. Neurosurg Focus 54:E8. https://doi.org/10.3171/2023.3.FOCUS2386

Article  PubMed  Google Scholar 

Emani S, Swaminathan A, Grobman B et al (2023) Critically reading machine learning literature in neurosurgery: a reader’s guide and checklist for appraising prediction models. Neurosurg Focus 54:E3. https://doi.org/10.3171/2023.3.FOCUS2352

Article  PubMed  Google Scholar 

Hajikarimloo B, SabbaghAlvani M, Koohfar A et al (2024) Clinical application of artificial intelligence in prediction of intraoperative cerebrospinal fluid leakage in pituitary surgery: A systematic review and meta-analysis. World Neurosurg 191:303-313.e1. https://doi.org/10.1016/j.wneu.2024.09.015

Article  PubMed  Google Scholar 

Hajikarimloo B, Habibi MA, Alvani MS et al (2024) Machine learning-based models for prediction of survival in medulloblastoma: a systematic review and meta-analysis. Neurol Sci 1–8. https://doi.org/10.1007/s10072-024-07879-w

Hajikarimloo B, Tos SM, Alvani MS et al (2024) Application of artificial intelligence in prediction of Ki-67 index in meningiomas: A systematic review and meta-analysis. World Neurosurg. https://doi.org/10.1016/j.wneu.2024.10.089

Article  PubMed  Google Scholar 

Li Z, Wang B, Liang H et al (2023) A three-stage eccDNA based molecular profiling significantly improves the identification, prognosis assessment and recurrence prediction accuracy in patients with glioma. Cancer Lett 574:216369. https://doi.org/10.1016/j.canlet.2023.216369

Article  CAS  PubMed  Google Scholar 

Wu X, Zhang S, Zhang Z et al (2024) Biologically interpretable multi-task deep learning pipeline predicts molecular alterations, grade, and prognosis in glioma patients. NPJ Precis Oncol 8:181. https://doi.org/10.1038/s41698-024-00670-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aboud O, Liu YA, Fiehn O et al (2023) Application of machine learning to metabolomic profile characterization in glioblastoma patients undergoing concurrent chemoradiation. Metabolites 13. https://doi.org/10.3390/metabo13020299

Chen Y, Zhao B, Zhu C et al (2023) Assessing the predictability of the H3K27M status in diffuse glioma patients using frequency importance analysis on chemical exchange saturation transfer MRI. Magn Reson Imaging 103:54–60. https://doi.org/10.1016/j.mri.2023.07.003

Article  CAS  PubMed  Google Scholar 

Jung JS, Choi YS, Ahn SS et al (2019) Differentiation between spinal cord diffuse midline glioma with histone H3 K27M mutation and wild type: comparative magnetic resonance imaging. Neuroradiology 61:313–322. https://doi.org/10.1007/s00234-019-02154-8

Article  PubMed  Google Scholar 

Huang B, Zhang Y, Mao Q et al (2023) Deep learning-based prediction of H3K27M alteration in diffuse midline gliomas based on whole-brain MRI. Cancer Med 12:17139–17148. https://doi.org/10.1002/cam4.6363

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kandemirli SG, Kocak B, Naganawa S et al (2021) Machine learning-based multiparametric magnetic resonance imaging radiomics for prediction of H3K27M mutation in Midline gliomas. World Neurosurg 151:e78–e85. https://doi.org/10.1016/j.wneu.2021.03.135

Article  PubMed  Google Scholar 

Li Q, Dong F, Jiang B, Zhang M (2021) Exploring MRI characteristics of brain diffuse Midline gliomas with the H3 K27M mutation using radiomics. Front Oncol 11:646267. https://doi.org/10.3389/fonc.2021.646267

Article  PubMed  PubMed Central  Google Scholar 

Whitmeyer M, Brahimaj BC, Beer-Furlan A et al (2021) Resection of vestibular schwannomas after stereotactic radiosurgery: a systematic review. J Neurosurg 135:881–889. https://doi.org/10.3171/2020.7.jns2044

Article  PubMed  Google Scholar 

Whiting PF, Rutjes AWS, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

Article  PubMed  Google Scholar 

McGuinness LA, Higgins JPT (2021) Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 12:55–61. https://doi.org/10.1002/jrsm.1411

Article  PubMed  Google Scholar 

Balduzzi S, Rücker G, Schwarzer G (2019) How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 22:153–160. https://doi.org/10.1136/ebmental-2019-300117

Article  PubMed  PubMed Central  Google Scholar 

Shim SR, Kim S-J, Lee J (2019) Diagnostic test accuracy: application and practice using R software. Epidemiol Health 41:e2019007. https://doi.org/10.4178/epih.e2019007

Article  PubMed  PubMed Central  Google Scholar 

Luo D, Wan X, Liu J, Tong T (2018) Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res 27:1785–1805. https://doi.org/10.1177/0962280216669183

Article  PubMed  Google Scholar 

Liu J, Chen F, Pan C et al (2018) A cascaded deep convolutional neural network for joint segmentation and genotype prediction of brainstem gliomas. IEEE Trans Biomed Eng 65:1943–1952. https://doi.org/10.1109/tbme.2018.2845706

Comments (0)

No login
gif