Antiglycation Activity of Isoindole Derivatives and Its Prediction Using Frontier Molecular Orbital Energies

Kular J.K., Basu S., Sharma R.I. 2014. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 5, 2041731414557112. https://doi.org/10.1177/2041731414557112

Article  PubMed  PubMed Central  Google Scholar 

Zhang W., Liu Y., Zhang H. 2021. Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci. 11, 65. https://doi.org/10.1186/s13578-021-00579-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Godfrey M. 2009. Extracellular matrix. In Asthma and COPD. Elsevier Ltd. 265‒274. https://doi.org/10.1016/B978-0-12-374001-4.00022-5

Dalal A.R., Pedroza A.J., Yokoyama N., Nakamura K., Shad R., Fischbein M.P. 2021. Abstract 13386: Extracellular matrix signaling in Marfan syndrome induced pluripotent stem cell derived smooth muscle cells. Circulation. 144, A13386. https://doi.org/10.1161/circ.144.suppl_1.13386

Article  Google Scholar 

Kingsbury K.D., Skeie J.M., Cosert K., Schmidt G.A., Aldrich B.T., Sales C.S., Weller J., Kruse F., Tho-masy S.M., Schlötzer-Schrehardt U., Greiner M.A. 2023. Type II diabetes mellitus causes extracellular matrix alterations in the posterior cornea that increase graft thickness and rigidity. Invest. Ophthalmol. Vis. Sci. 64 (7), 26. https://doi.org/10.1167/iovs.64.7.26

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ziyadeh F.N. 1993. The extracellular matrix in diabetic nephropathy. Am. J. Kidney Dis. 22 (5), 736‒744. https://doi.org/10.1016/s0272-6386(12)80440-9

Article  CAS  PubMed  Google Scholar 

Statzer C., Park J.Y.C., Ewald C.Y. 2023. Extracellular matrix dynamics as an emerging yet understudied hallmark of aging and longevity. Aging. Dis. 14 (3), 670‒693. https://doi.org/10.14336/AD.2022.1116

Article  PubMed  PubMed Central  Google Scholar 

Wight T.N., Potter-Perigo S. 2011. The extracellular matrix: an active or passive player in fibrosis? Am. J. Physiol. Gastrointest. Liver Physiol. 301 (6), G950‒G955. https://doi.org/10.1152/ajpgi.00132.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voziyan P., Uppuganti S., Leser M., Rose K.L., Nyman J.S. 2023. Mapping glycation and glycoxidation sites in collagen I of human cortical bone. BBA Adv. 3, 100079. https://doi.org/10.1016/j.bbadva.2023.100079

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duran-Jimenez B., Dobler D., Moffatt S., Rabbani N., Streuli C.H., Thornalley P.J., Tomlinson D.R., Gardiner N.J. 2009. Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes. 58 (12), 2893–2903. https://doi.org/10.2337/db09-0320

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sant S., Wang D., Agarwal R., Dillender S., Ferrell N. 2020. Glycation alters the mechanical behavior of kidney extracellular matrix. Matrix Biol. Plus. 8, 100035. https://doi.org/10.1016/j.mbplus.2020.100035

Article  PubMed  PubMed Central  Google Scholar 

Kim H.J., Jeong M.S., Jang S.B. 2021. Molecular characteristics of RAGE and advances in small-molecule inhibitors. Int. J. Mol. Sci. 22 (13), 6904. https://doi.org/10.3390/ijms22136904

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashwitha Rai K.S., Jyothi Rasmi R.R., Sarnaik J., Kadwad V.B., Shenoy K.B., Somashekarappa H.M. 2015. Preparation and characterization of (125)i labeled bovine serum albumin. Indian J. Pharm. Sci. 77 (1), 107–110. https://doi.org/10.4103/0250-474x.151589

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rombouts I., Lagrain B., Scherf K.A., Lambrecht M.A., Koehler P., Delcour J.A. 2015. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Sci. Rep. 5, 12210. https://doi.org/10.1038/srep12210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kılıç Süloğlu A., Selmanoglu G., Gündoğdu Ö., Kishalı N.H., Girgin G., Palabıyık S., Tan A., Kara Y., Baydar T. 2020. Evaluation of isoindole derivatives: antioxidant potential and cytotoxicity in the HT-29 colon cancer cells. Arch. Pharm. (Weinheim). 353 (11), e2000065. https://doi.org/10.1002/ardp.202000065

Article  CAS  Google Scholar 

Jahan H., Siddiqui N.N., Iqbal S., Basha F.Z., Khan M.A., Aslam T., Choudhary M.I. 2022. Indole-linked 1,2,3-triazole derivatives efficiently modulate COX-2 protein and PGE2 levels in human THP-1 monocytes by suppressing AGE-ROS-NF-kβ nexus. Life Sci. 291, 120282. https://doi.org/10.1016/j.lfs.2021.120282

Article  CAS  PubMed  Google Scholar 

Shono T., Matsumura Y., Tsubata K., Inoue K., Nishida R. 1983. A new synthetic method of 1-azabicyclo[4.n.0]systems. Chem. Lett. 12 (1), 21‒24. https://doi.org/10.1246/cl.1983.21

Article  Google Scholar 

Varlamov A.V., Boltukhina E.V., Zubkov F.I., Sidorenko N.V., Chernyshev A.I., Grudinin D.G. 2004. Preparative synthesis of 7-carboxy-2-R-isoindol-1-ones. Chem. Heterocycl. Comp. 40, 22‒28. https://doi.org/10.1023/B:COHC.0000023763.75894.63

Article  CAS  Google Scholar 

Toze F.A., Poplevin D.S., Zubkov F.I., Nikitina E.V., Porras C., Khrustalev V.N. 2015. Crystal structure of methyl (3RS,4SR,4aRS,11aRS,11bSR)-5-oxo-3,4,4a,5,7,8,9,10,11,11a-deca-hydro-3,11b-epoxyazepino[2,1-a]isoindole-4-carboxylate. Acta Cryst. E Crystallogr. Commun. 71 (Pt 10), o729‒o730. https://doi.org/10.1107/S2056989015016679

Article  CAS  Google Scholar 

Zubkov F.I., Airiyan I.K., Ershova J.D., Galeev T.R., Zaytsev V.P., Nikitina E.V., Varlamov A.V. 2012. Aromatization of IMDAF adducts in aqueous alkaline media. RSC Adv. 2 (10), 4103. https://doi.org/10.1039/c2ra20295f

Article  CAS  Google Scholar 

Boltukhina E.V., Zubkov F.I., Nikitina E.V., Varlamov A.V. 2005. Novel approach to isoindolo[2,1-a]quinolines: synthesis of 1- and 3-halo-substituted 11-oxo-5,6,6a,11-tetrahydroisoindolo[2,1-a]quinoline-10-carboxylic acids. Synthesis. 2005 (11), 1859–1875. https://doi.org/10.1055/s-2005-869948

Zubkov F.I., Boltukhina E.V., Turchin K.F., Borisov R.S., Varlamov A.V. 2005. New synthetic approach to substituted isoindolo[2,1-a]quinoline carboxylic acids via intramolecular Diels–Alder reaction of 4-(N-furyl-2)-4-arylaminobutenes-1 with maleic anhydride. Tetrahedron. 61 (16), 4099‒4113. https://doi.org/10.1016/j.tet.2005.02.017

Article  CAS  Google Scholar 

Varlamov A.V., Zubkov F.I., Boltukhina E.V., Sidorenko N.V., Borisov R.S. 2003. A general strategy for the synthesis of oxoisoindolo[2,1-a]quinoline derivatives: the first efficient synthesis of 5,6,6a,11-tetrahydro-11-oxoisoindolo[2,1-a]quinoline-10-carboxylic acids. Tetrahedron Lett. 44 (18), 3641‒3643. https://doi.org/10.1016/S0040-4039(03)00705-6

Article  CAS  Google Scholar 

Firth J.D., Craven P.G.E., Lilburn M., Pahl A., Marsden S.P., Nelson A. 2016. A biosynthesis-inspired approach to over twenty diverse natural product-like scaffolds. Chem. Commun. 52, 9837‒9840. https://doi.org/10.1039/c6cc04662b

Article  CAS  Google Scholar 

Zubkov F.I., Zaytsev V.P., Nikitina E.V., Khrustalev V.N., Gozun S.V., Boltukhina E.V., Varlamov A.V. 2011. Skeletal Wagner–Meerwein rearrangement of perhydro-3a,6;4,5-diepoxyisoindoles. Tetrahedron. 67 (47), 9148‒9163. https://doi.org/10.1016/j.tet.2011.09.099

Article  CAS  Google Scholar 

Antonova A.S., Vinokurova M.A., Kumandin P.A., Merkulova N.L., Sinelshchikova A.A., Grigoriev M.S., Novikov R.A., Kouznetsov V.V., Polyanskii K.B., Zubkov F.I. 2020. Application of new efficient Hoveyda-Grubbs catalysts comprising an N→Ru coordinate bond in a six-membered ring for the synthesis of natural product-like cyclopenta[b]furo[2,3-c]pyrroles. Molecules. 25 (22), 5379. https://doi.org/10.3390/molecules25225379

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho S.J., Roman G., Yeboah F., Konishi Y. 2007. The road to advanced glycation end products: a mechanistic perspective. Curr. Med. Chem. 14 (15), 1653–1671. https://doi.org/10.2174/092986707780830989

Article  CAS  PubMed  Google Scholar 

Beisswenger P.J., Howell S., Mackenzie T., Corstjens H., Muizzuddin N., Matsui M.S. 2012. Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes. Diabetes Technol. Ther. 14 (3), 285‒292. https://doi.org/10.1089/dia.2011.0108

Article  CAS  PubMed  Google Scholar 

Weintraub R.A., Wang X. 2023. Recent developments in isoindole chemistry. Synthesis. 55 (4), 519‒546. https://doi.org/10.1055/s-0042-175

Comments (0)

No login
gif