Kular J.K., Basu S., Sharma R.I. 2014. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 5, 2041731414557112. https://doi.org/10.1177/2041731414557112
Article PubMed PubMed Central Google Scholar
Zhang W., Liu Y., Zhang H. 2021. Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci. 11, 65. https://doi.org/10.1186/s13578-021-00579-4
Article CAS PubMed PubMed Central Google Scholar
Godfrey M. 2009. Extracellular matrix. In Asthma and COPD. Elsevier Ltd. 265‒274. https://doi.org/10.1016/B978-0-12-374001-4.00022-5
Dalal A.R., Pedroza A.J., Yokoyama N., Nakamura K., Shad R., Fischbein M.P. 2021. Abstract 13386: Extracellular matrix signaling in Marfan syndrome induced pluripotent stem cell derived smooth muscle cells. Circulation. 144, A13386. https://doi.org/10.1161/circ.144.suppl_1.13386
Kingsbury K.D., Skeie J.M., Cosert K., Schmidt G.A., Aldrich B.T., Sales C.S., Weller J., Kruse F., Tho-masy S.M., Schlötzer-Schrehardt U., Greiner M.A. 2023. Type II diabetes mellitus causes extracellular matrix alterations in the posterior cornea that increase graft thickness and rigidity. Invest. Ophthalmol. Vis. Sci. 64 (7), 26. https://doi.org/10.1167/iovs.64.7.26
Article CAS PubMed PubMed Central Google Scholar
Ziyadeh F.N. 1993. The extracellular matrix in diabetic nephropathy. Am. J. Kidney Dis. 22 (5), 736‒744. https://doi.org/10.1016/s0272-6386(12)80440-9
Article CAS PubMed Google Scholar
Statzer C., Park J.Y.C., Ewald C.Y. 2023. Extracellular matrix dynamics as an emerging yet understudied hallmark of aging and longevity. Aging. Dis. 14 (3), 670‒693. https://doi.org/10.14336/AD.2022.1116
Article PubMed PubMed Central Google Scholar
Wight T.N., Potter-Perigo S. 2011. The extracellular matrix: an active or passive player in fibrosis? Am. J. Physiol. Gastrointest. Liver Physiol. 301 (6), G950‒G955. https://doi.org/10.1152/ajpgi.00132.2011
Article CAS PubMed PubMed Central Google Scholar
Voziyan P., Uppuganti S., Leser M., Rose K.L., Nyman J.S. 2023. Mapping glycation and glycoxidation sites in collagen I of human cortical bone. BBA Adv. 3, 100079. https://doi.org/10.1016/j.bbadva.2023.100079
Article CAS PubMed PubMed Central Google Scholar
Duran-Jimenez B., Dobler D., Moffatt S., Rabbani N., Streuli C.H., Thornalley P.J., Tomlinson D.R., Gardiner N.J. 2009. Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes. 58 (12), 2893–2903. https://doi.org/10.2337/db09-0320
Article CAS PubMed PubMed Central Google Scholar
Sant S., Wang D., Agarwal R., Dillender S., Ferrell N. 2020. Glycation alters the mechanical behavior of kidney extracellular matrix. Matrix Biol. Plus. 8, 100035. https://doi.org/10.1016/j.mbplus.2020.100035
Article PubMed PubMed Central Google Scholar
Kim H.J., Jeong M.S., Jang S.B. 2021. Molecular characteristics of RAGE and advances in small-molecule inhibitors. Int. J. Mol. Sci. 22 (13), 6904. https://doi.org/10.3390/ijms22136904
Article CAS PubMed PubMed Central Google Scholar
Ashwitha Rai K.S., Jyothi Rasmi R.R., Sarnaik J., Kadwad V.B., Shenoy K.B., Somashekarappa H.M. 2015. Preparation and characterization of (125)i labeled bovine serum albumin. Indian J. Pharm. Sci. 77 (1), 107–110. https://doi.org/10.4103/0250-474x.151589
Article CAS PubMed PubMed Central Google Scholar
Rombouts I., Lagrain B., Scherf K.A., Lambrecht M.A., Koehler P., Delcour J.A. 2015. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Sci. Rep. 5, 12210. https://doi.org/10.1038/srep12210
Article CAS PubMed PubMed Central Google Scholar
Kılıç Süloğlu A., Selmanoglu G., Gündoğdu Ö., Kishalı N.H., Girgin G., Palabıyık S., Tan A., Kara Y., Baydar T. 2020. Evaluation of isoindole derivatives: antioxidant potential and cytotoxicity in the HT-29 colon cancer cells. Arch. Pharm. (Weinheim). 353 (11), e2000065. https://doi.org/10.1002/ardp.202000065
Jahan H., Siddiqui N.N., Iqbal S., Basha F.Z., Khan M.A., Aslam T., Choudhary M.I. 2022. Indole-linked 1,2,3-triazole derivatives efficiently modulate COX-2 protein and PGE2 levels in human THP-1 monocytes by suppressing AGE-ROS-NF-kβ nexus. Life Sci. 291, 120282. https://doi.org/10.1016/j.lfs.2021.120282
Article CAS PubMed Google Scholar
Shono T., Matsumura Y., Tsubata K., Inoue K., Nishida R. 1983. A new synthetic method of 1-azabicyclo[4.n.0]systems. Chem. Lett. 12 (1), 21‒24. https://doi.org/10.1246/cl.1983.21
Varlamov A.V., Boltukhina E.V., Zubkov F.I., Sidorenko N.V., Chernyshev A.I., Grudinin D.G. 2004. Preparative synthesis of 7-carboxy-2-R-isoindol-1-ones. Chem. Heterocycl. Comp. 40, 22‒28. https://doi.org/10.1023/B:COHC.0000023763.75894.63
Toze F.A., Poplevin D.S., Zubkov F.I., Nikitina E.V., Porras C., Khrustalev V.N. 2015. Crystal structure of methyl (3RS,4SR,4aRS,11aRS,11bSR)-5-oxo-3,4,4a,5,7,8,9,10,11,11a-deca-hydro-3,11b-epoxyazepino[2,1-a]isoindole-4-carboxylate. Acta Cryst. E Crystallogr. Commun. 71 (Pt 10), o729‒o730. https://doi.org/10.1107/S2056989015016679
Zubkov F.I., Airiyan I.K., Ershova J.D., Galeev T.R., Zaytsev V.P., Nikitina E.V., Varlamov A.V. 2012. Aromatization of IMDAF adducts in aqueous alkaline media. RSC Adv. 2 (10), 4103. https://doi.org/10.1039/c2ra20295f
Boltukhina E.V., Zubkov F.I., Nikitina E.V., Varlamov A.V. 2005. Novel approach to isoindolo[2,1-a]quinolines: synthesis of 1- and 3-halo-substituted 11-oxo-5,6,6a,11-tetrahydroisoindolo[2,1-a]quinoline-10-carboxylic acids. Synthesis. 2005 (11), 1859–1875. https://doi.org/10.1055/s-2005-869948
Zubkov F.I., Boltukhina E.V., Turchin K.F., Borisov R.S., Varlamov A.V. 2005. New synthetic approach to substituted isoindolo[2,1-a]quinoline carboxylic acids via intramolecular Diels–Alder reaction of 4-(N-furyl-2)-4-arylaminobutenes-1 with maleic anhydride. Tetrahedron. 61 (16), 4099‒4113. https://doi.org/10.1016/j.tet.2005.02.017
Varlamov A.V., Zubkov F.I., Boltukhina E.V., Sidorenko N.V., Borisov R.S. 2003. A general strategy for the synthesis of oxoisoindolo[2,1-a]quinoline derivatives: the first efficient synthesis of 5,6,6a,11-tetrahydro-11-oxoisoindolo[2,1-a]quinoline-10-carboxylic acids. Tetrahedron Lett. 44 (18), 3641‒3643. https://doi.org/10.1016/S0040-4039(03)00705-6
Firth J.D., Craven P.G.E., Lilburn M., Pahl A., Marsden S.P., Nelson A. 2016. A biosynthesis-inspired approach to over twenty diverse natural product-like scaffolds. Chem. Commun. 52, 9837‒9840. https://doi.org/10.1039/c6cc04662b
Zubkov F.I., Zaytsev V.P., Nikitina E.V., Khrustalev V.N., Gozun S.V., Boltukhina E.V., Varlamov A.V. 2011. Skeletal Wagner–Meerwein rearrangement of perhydro-3a,6;4,5-diepoxyisoindoles. Tetrahedron. 67 (47), 9148‒9163. https://doi.org/10.1016/j.tet.2011.09.099
Antonova A.S., Vinokurova M.A., Kumandin P.A., Merkulova N.L., Sinelshchikova A.A., Grigoriev M.S., Novikov R.A., Kouznetsov V.V., Polyanskii K.B., Zubkov F.I. 2020. Application of new efficient Hoveyda-Grubbs catalysts comprising an N→Ru coordinate bond in a six-membered ring for the synthesis of natural product-like cyclopenta[b]furo[2,3-c]pyrroles. Molecules. 25 (22), 5379. https://doi.org/10.3390/molecules25225379
Article CAS PubMed PubMed Central Google Scholar
Cho S.J., Roman G., Yeboah F., Konishi Y. 2007. The road to advanced glycation end products: a mechanistic perspective. Curr. Med. Chem. 14 (15), 1653–1671. https://doi.org/10.2174/092986707780830989
Article CAS PubMed Google Scholar
Beisswenger P.J., Howell S., Mackenzie T., Corstjens H., Muizzuddin N., Matsui M.S. 2012. Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes. Diabetes Technol. Ther. 14 (3), 285‒292. https://doi.org/10.1089/dia.2011.0108
Article CAS PubMed Google Scholar
Weintraub R.A., Wang X. 2023. Recent developments in isoindole chemistry. Synthesis. 55 (4), 519‒546. https://doi.org/10.1055/s-0042-175
Comments (0)