Redefining respiratory sinus arrhythmia as respiratory heart rate variability: an international Expert Recommendation for terminological clarity

Balzarotti, S., Biassoni, F., Colombo, B. & Ciceri, M. R. Cardiac vagal control as a marker of emotion regulation in healthy adults: a review. Biol. Psychol. 130, 54–66 (2017).

Article  CAS  PubMed  Google Scholar 

Elstad, M., O’Callaghan, E. L., Smith, A. J., Ben-Tal, A. & Ramchandra, R. Cardiorespiratory interactions in humans and animals: rhythms for life. Am. J. Physiol. Heart Circ. Physiol. 315, H6–H17 (2018).

Article  PubMed  Google Scholar 

Fisher, J. P., Zera, T. & Paton, J. F. R. Respiratory–cardiovascular interactions. Handb. Clin. Neurol. 188, 279–308 (2022).

Article  PubMed  Google Scholar 

Hales, S. Statical Essays: Containing Haemastaticks Vol. II (W. Innys, R. Manby, and T. Woodward, London, 1733).

Ludwig, C. Beiträge zur Kenntniss des Einflusses der Respirationsbewegungen auf den Blutlauf im Aortensysteme [in German]. Arch. Anat. Physiol. 13, 241–302 (1847).

Google Scholar 

Billman, G. E. Heart rate variability – a historical perspective. Front. Physiol. 2, 86 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Anrep, G., Pascual, W. & Rössler, R. Respiratory variations of the heart rate – II—The central mechanism of the respiratory arrhythmia and the inter-relations between the central and the reflex mechanisms. Proc. R. Soc. Lond. B Biol. Sci. 119, 218–230 (1936).

Article  Google Scholar 

Potter, E. K. Inspiratory inhibition of vagal responses to baroreceptor and chemoreceptor stimuli in the dog. J. Physiol. 316, 177–190 (1981).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilbey, M. P., Jordan, D., Richter, D. W. & Spyer, K. M. Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat. J. Physiol. 356, 65–78 (1984).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. & Ramage, A. G. The role of central 5-HT1A receptors in the control of B-fibre cardiac and bronchoconstrictor vagal preganglionic neurones in anaesthetized cats. J. Physiol. 536, 753–767 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neff, R. A., Wang, J., Baxi, S., Evans, C. & Mendelowitz, D. Respiratory sinus arrhythmia: endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons. Circ. Res. 93, 565–572 (2003).

Article  CAS  PubMed  Google Scholar 

Farmer, D. G. S., Dutschmann, M., Paton, J. F. R., Pickering, A. E. & McAllen, R. M. Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia. J. Physiol. 594, 7249–7265 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gourine, A. V., Machhada, A., Trapp, S. & Spyer, K. M. Cardiac vagal preganglionic neurones: an update. Auton. Neurosci. 199, 24–28 (2016).

Article  PubMed  Google Scholar 

Menuet, C. et al. PreBötzinger complex neurons drive respiratory modulation of blood pressure and heart rate. eLife 9, e57288 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buron, J. et al. The oxytocin-modulated brain circuit that synchronizes heart rate with breathing. Preprint at bioRxiv https://doi.org/10.1101/2023.09.26.559512 (2023).

McAllen, R. M., Salo, L. M., Paton, J. F. R. & Pickering, A. E. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis. J. Physiol. 589, 5801–5818 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grossman, P. Respiratory sinus arrhythmia (RSA), vagal tone and biobehavioral integration: beyond parasympathetic function. Biol. Psychol. 186, 108739 (2024).

Article  PubMed  Google Scholar 

Farmer, D. G. S. et al. Firing properties of single axons with cardiac rhythmicity in the human cervical vagus nerve. J. Physiol. 603, 1941–1958 (2024).

Article  PubMed  Google Scholar 

Grossman, P. & Taylor, E. W. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 74, 263–285 (2007).

Article  PubMed  Google Scholar 

Hirsch, J. A. & Bishop, B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol. 241, H620–H629 (1981).

CAS  PubMed  Google Scholar 

Taylor, E. W., Wang, T. & Leite, C. A. C. An overview of the phylogeny of cardiorespiratory control in vertebrates with some reflections on the ‘polyvagal theory’. Biol. Psychol. 172, 108382 (2022).

Article  PubMed  Google Scholar 

Monteiro, D. A. et al. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish. Sci. Adv. 4, eaaq0800 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Hayano, J., Yasuma, F., Okada, A., Mukai, S. & Fujinami, T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation 94, 842–847 (1996).

Article  CAS  PubMed  Google Scholar 

Ben-Tal, A., Shamailov, S. S. & Paton, J. F. R. Evaluating the physiological significance of respiratory sinus arrhythmia: looking beyond ventilation–perfusion efficiency. J. Physiol. 590, 1989–2008 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies, H. E. Respiratory change in heart rate, sinus arrhythmia in the elderly. Gerontol. Clin. 17, 96–100 (1975).

Article  CAS  Google Scholar 

Shanks, J. et al. Reverse re-modelling chronic heart failure by reinstating heart rate variability. Basic. Res. Cardiol. 117, 4 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Callaghan, E. L. et al. Enhancing respiratory sinus arrhythmia increases cardiac output in rats with left ventricular dysfunction. J. Physiol. 598, 455–471 (2020).

Article  PubMed  Google Scholar 

Bernardi, L. et al. Effect of rosary prayer and yoga mantras on autonomic cardiovascular rhythms: comparative study. BMJ 323, 1446–1449 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kromenacker, B. W., Sanova, A. A., Marcus, F. I., Allen, J. J. B. & Lane, R. D. Vagal mediation of low-frequency heart rate variability during slow yogic breathing. Psychosom. Med. 80, 581–587 (2018).

Article  PubMed  Google Scholar 

Dick, T. E., Mims, J. R., Hsieh, Y.-H., Morris, K. F. & Wehrwein, E. A. Increased cardio-respiratory coupling evoked by slow deep breathing can persist in normal humans. Respir. Physiol. Neurobiol. 204, 99–111 (2014).

Article  PubMed  Google Scholar 

Malik, M. et al. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996).

Article  Google Scholar 

Ritz, T. Putting back respiration into respiratory sinus arrhythmia or high-frequency heart rate variability: implications for interpretation, respiratory rhythmicity, and health. Biol. Psychol. 185, 108728 (2024).

Article  PubMed  Google Scholar 

Shaffer, F. & Ginsberg, J. P. An overview of heart rate variability metrics and norms. Front. Public. Health 5, 258 (2017).

Article  PubMed  PubMed Central  Google Scholar 

National Heart, Lung, and Blood Institute. Arrhythmias: What Is an Arrhythmia? NIH www.nhlbi.nih.gov/health/arrhythmias (2022).

American Heart Association. What is an Arrhythmia? American Heart Association www.heart.org/en/health-topics/arrhythmia/about-arrhythmia (2024).

Wikipedia. Arrhythmia. Wikipedia en.wikipedia.org/wiki/Arrhythmia (2025).

Singh, N. et al. Heart rate variability: an old metric with new meaning in the era of using mHealth technologies for health and exercise training guidance. Part two: prognosis and training. Arrhythm. Electrophysiol. Rev. 7, 247–255 (2018).

PubMed 

Comments (0)

No login
gif