Balzarotti, S., Biassoni, F., Colombo, B. & Ciceri, M. R. Cardiac vagal control as a marker of emotion regulation in healthy adults: a review. Biol. Psychol. 130, 54–66 (2017).
Article CAS PubMed Google Scholar
Elstad, M., O’Callaghan, E. L., Smith, A. J., Ben-Tal, A. & Ramchandra, R. Cardiorespiratory interactions in humans and animals: rhythms for life. Am. J. Physiol. Heart Circ. Physiol. 315, H6–H17 (2018).
Fisher, J. P., Zera, T. & Paton, J. F. R. Respiratory–cardiovascular interactions. Handb. Clin. Neurol. 188, 279–308 (2022).
Hales, S. Statical Essays: Containing Haemastaticks Vol. II (W. Innys, R. Manby, and T. Woodward, London, 1733).
Ludwig, C. Beiträge zur Kenntniss des Einflusses der Respirationsbewegungen auf den Blutlauf im Aortensysteme [in German]. Arch. Anat. Physiol. 13, 241–302 (1847).
Billman, G. E. Heart rate variability – a historical perspective. Front. Physiol. 2, 86 (2011).
Article PubMed PubMed Central Google Scholar
Anrep, G., Pascual, W. & Rössler, R. Respiratory variations of the heart rate – II—The central mechanism of the respiratory arrhythmia and the inter-relations between the central and the reflex mechanisms. Proc. R. Soc. Lond. B Biol. Sci. 119, 218–230 (1936).
Potter, E. K. Inspiratory inhibition of vagal responses to baroreceptor and chemoreceptor stimuli in the dog. J. Physiol. 316, 177–190 (1981).
Article CAS PubMed PubMed Central Google Scholar
Gilbey, M. P., Jordan, D., Richter, D. W. & Spyer, K. M. Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat. J. Physiol. 356, 65–78 (1984).
Article CAS PubMed PubMed Central Google Scholar
Wang, Y. & Ramage, A. G. The role of central 5-HT1A receptors in the control of B-fibre cardiac and bronchoconstrictor vagal preganglionic neurones in anaesthetized cats. J. Physiol. 536, 753–767 (2001).
Article CAS PubMed PubMed Central Google Scholar
Neff, R. A., Wang, J., Baxi, S., Evans, C. & Mendelowitz, D. Respiratory sinus arrhythmia: endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons. Circ. Res. 93, 565–572 (2003).
Article CAS PubMed Google Scholar
Farmer, D. G. S., Dutschmann, M., Paton, J. F. R., Pickering, A. E. & McAllen, R. M. Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia. J. Physiol. 594, 7249–7265 (2016).
Article CAS PubMed PubMed Central Google Scholar
Gourine, A. V., Machhada, A., Trapp, S. & Spyer, K. M. Cardiac vagal preganglionic neurones: an update. Auton. Neurosci. 199, 24–28 (2016).
Menuet, C. et al. PreBötzinger complex neurons drive respiratory modulation of blood pressure and heart rate. eLife 9, e57288 (2020).
Article CAS PubMed PubMed Central Google Scholar
Buron, J. et al. The oxytocin-modulated brain circuit that synchronizes heart rate with breathing. Preprint at bioRxiv https://doi.org/10.1101/2023.09.26.559512 (2023).
McAllen, R. M., Salo, L. M., Paton, J. F. R. & Pickering, A. E. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis. J. Physiol. 589, 5801–5818 (2011).
Article CAS PubMed PubMed Central Google Scholar
Grossman, P. Respiratory sinus arrhythmia (RSA), vagal tone and biobehavioral integration: beyond parasympathetic function. Biol. Psychol. 186, 108739 (2024).
Farmer, D. G. S. et al. Firing properties of single axons with cardiac rhythmicity in the human cervical vagus nerve. J. Physiol. 603, 1941–1958 (2024).
Grossman, P. & Taylor, E. W. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 74, 263–285 (2007).
Hirsch, J. A. & Bishop, B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol. 241, H620–H629 (1981).
Taylor, E. W., Wang, T. & Leite, C. A. C. An overview of the phylogeny of cardiorespiratory control in vertebrates with some reflections on the ‘polyvagal theory’. Biol. Psychol. 172, 108382 (2022).
Monteiro, D. A. et al. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish. Sci. Adv. 4, eaaq0800 (2018).
Article PubMed PubMed Central Google Scholar
Hayano, J., Yasuma, F., Okada, A., Mukai, S. & Fujinami, T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation 94, 842–847 (1996).
Article CAS PubMed Google Scholar
Ben-Tal, A., Shamailov, S. S. & Paton, J. F. R. Evaluating the physiological significance of respiratory sinus arrhythmia: looking beyond ventilation–perfusion efficiency. J. Physiol. 590, 1989–2008 (2012).
Article CAS PubMed PubMed Central Google Scholar
Davies, H. E. Respiratory change in heart rate, sinus arrhythmia in the elderly. Gerontol. Clin. 17, 96–100 (1975).
Shanks, J. et al. Reverse re-modelling chronic heart failure by reinstating heart rate variability. Basic. Res. Cardiol. 117, 4 (2022).
Article CAS PubMed PubMed Central Google Scholar
O’Callaghan, E. L. et al. Enhancing respiratory sinus arrhythmia increases cardiac output in rats with left ventricular dysfunction. J. Physiol. 598, 455–471 (2020).
Bernardi, L. et al. Effect of rosary prayer and yoga mantras on autonomic cardiovascular rhythms: comparative study. BMJ 323, 1446–1449 (2001).
Article CAS PubMed PubMed Central Google Scholar
Kromenacker, B. W., Sanova, A. A., Marcus, F. I., Allen, J. J. B. & Lane, R. D. Vagal mediation of low-frequency heart rate variability during slow yogic breathing. Psychosom. Med. 80, 581–587 (2018).
Dick, T. E., Mims, J. R., Hsieh, Y.-H., Morris, K. F. & Wehrwein, E. A. Increased cardio-respiratory coupling evoked by slow deep breathing can persist in normal humans. Respir. Physiol. Neurobiol. 204, 99–111 (2014).
Malik, M. et al. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996).
Ritz, T. Putting back respiration into respiratory sinus arrhythmia or high-frequency heart rate variability: implications for interpretation, respiratory rhythmicity, and health. Biol. Psychol. 185, 108728 (2024).
Shaffer, F. & Ginsberg, J. P. An overview of heart rate variability metrics and norms. Front. Public. Health 5, 258 (2017).
Article PubMed PubMed Central Google Scholar
National Heart, Lung, and Blood Institute. Arrhythmias: What Is an Arrhythmia? NIH www.nhlbi.nih.gov/health/arrhythmias (2022).
American Heart Association. What is an Arrhythmia? American Heart Association www.heart.org/en/health-topics/arrhythmia/about-arrhythmia (2024).
Wikipedia. Arrhythmia. Wikipedia en.wikipedia.org/wiki/Arrhythmia (2025).
Singh, N. et al. Heart rate variability: an old metric with new meaning in the era of using mHealth technologies for health and exercise training guidance. Part two: prognosis and training. Arrhythm. Electrophysiol. Rev. 7, 247–255 (2018).
Comments (0)