Role of Residual Inflammation as a Risk Factor Across Cardiovascular-Kidney-Metabolic (CKM) Syndrome: Unpacking the Burden in People with Type 2 Diabetes

Ndumele CE, Rangaswami J, Chow SL, et al. Cardiovascular-kidney-metabolic health: a presidential advisory from the American Heart Association. Circulation. 2023;148(20):1606–35.

Article  PubMed  Google Scholar 

Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.

Article  CAS  PubMed  Google Scholar 

Du XL, Edelstein D, Dimmeler S, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Investig. 2001;108(9):1341–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation. 2002;105(14):1656–62.

Article  CAS  PubMed  Google Scholar 

Basta G, Lazzerini G, Massaro M, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002;105(7):816–22.

Article  CAS  PubMed  Google Scholar 

Bucciarelli LG, Kaneko M, Ananthakrishnan R, et al. Receptor for advanced-glycation end products: key modulator of myocardial ischemic injury. Circulation. 2006;113(9):1226–34.

Article  CAS  PubMed  Google Scholar 

Wautier M-P, Chappey O, Corda S, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol-Endocrinol Metab. 2001;280(5):E685–94.

Article  CAS  PubMed  Google Scholar 

American Diabetes Association Professional Practice Committee. Summary of revisions: standards of care in diabetes—2024. Diabetes Care. 2024;47(Supplement_1):S5–S10.

Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17:1–19.

Article  Google Scholar 

Shi S, Huang H, Huang Y, Zhong VW, Feng N. Lifestyle behaviors and cardiometabolic diseases by race and ethnicity and social risk factors among US young adults, 2011 to 2018. J Am Heart Assoc. 2023;12(17):e028926.

Article  PubMed  PubMed Central  Google Scholar 

Gupta Y, Goyal A, Kalaivani M, Tandon N. Cardiometabolic risk factors in young Indian men and their association with parameters of insulin resistance and beta-cell function. World J Cardiol. 2022;14(8):462–72.

Article  PubMed  PubMed Central  Google Scholar 

Mezhal F, Oulhaj A, Abdulle A, et al. High prevalence of cardiometabolic risk factors amongst young adults in the United Arab Emirates: the UAE Healthy Future Study. BMC Cardiovasc Disord. 2023;23(1):137.

Article  PubMed  PubMed Central  Google Scholar 

Raposeiras-Roubin S, Rosselló X, Oliva B, et al. Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol. 2021;77(24):3031–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marx N, Deanfield JE, Gerward S, et al. Prevalence of systemic inflammation in individuals with atherosclerotic cardiovascular disease: baseline characteristics from the SELECT, SOUL and FLOW phase 3 trials of semaglutide. European Heart J. 2023;44(Supplement_2):ehad655.2751. https://doi.org/10.1093/eurheartj/ehad655.2751.

Ridker PM, Lei L, Louie MJ, et al. Inflammation and cholesterol as predictors of cardiovascular events among 13 970 contemporary high-risk patients with statin intolerance. Circulation. 2024;149(1):28–35.

Article  CAS  PubMed  Google Scholar 

Liu Q, Fan J, Bai J, et al. IL-34 promotes foam cell formation by enhancing CD36 expression through p38 MAPK pathway. Sci Rep. 2018;8(1):17347.

Article  PubMed  PubMed Central  Google Scholar 

Mantione ME, Lombardi M, Baccellieri D, et al. IL-1β/MMP9 activation in primary human vascular smooth muscle-like cells: exploring the role of TNFα and P2X7. Int J Cardiol. 2019;278:202–9.

Article  PubMed  Google Scholar 

Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.

Article  Google Scholar 

Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344(8934):1383–9.

Google Scholar 

Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685–96.

Article  CAS  PubMed  Google Scholar 

LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352(14):1425–35.

Article  CAS  PubMed  Google Scholar 

Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504.

Article  CAS  PubMed  Google Scholar 

Koushki K, Shahbaz SK, Mashayekhi K, et al. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. Clin Rev Allergy Immunol. 2021;60:175–99.

Article  CAS  PubMed  Google Scholar 

Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207.

Article  CAS  PubMed  Google Scholar 

Albert MA, Danielson E, Rifai N, et al. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA. 2001;286(1):64–70.

Article  CAS  PubMed  Google Scholar 

Nissen SE, Tuzcu EM, Schoenhagen P, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352(1):29–38.

Article  CAS  PubMed  Google Scholar 

Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023;389(24):2221–32.

Article  CAS  PubMed  Google Scholar 

Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121–30.

Article  CAS  PubMed  Google Scholar 

Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

Article  CAS  PubMed  Google Scholar 

Sattar N, Lee MM, Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9(10):653–62.

Article  CAS  PubMed  Google Scholar 

Kristensen SL, Rørth R, Jhund PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776–85.

Article  CAS  PubMed  Google Scholar 

Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44.

Article  CAS  PubMed 

Comments (0)

No login
gif