Ooi EM, Barrett PH, Chan DC, Watts GF. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci. 2008;114:611–24. https://doi.org/10.1042/CS20070308.
Moulin P, Dufour R, Averna M, Arca M, Cefalu AB, et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an “FCS score.” Atherosclerosis. 2018;275:265–72. https://doi.org/10.1016/j.atherosclerosis.2018.06.814.
Article CAS PubMed Google Scholar
Izar MCO, Santos-Filho RD, Assad MHV, Chagas ACP, Toledo-Júnior AO, Nogueira ACC, et al. Brazilian position statement for familial chylomicronemia syndrome – 2023. Arq Bras Cardiol. 2023;120(4):20230203. https://doi.org/10.36660/abc.20230203.
Davidson M, Stevenson M, Hsieh A, Ahmad Z, Roeters van Lennep J, Crowson C, Witzum JL. The burden of familial chylomicronemia syndrome: results from the global IN-FOCUS study. J Clin Lipidol. 2018;12:898–907. https://doi.org/10.1016/j.jacl.2018.04.009.
Santos RD, Lorenzatti A, Corral P, Nogueira JP, Cafferata AM, Aimone D, et al. Challenges in familial chylomicronemia syndrome diagnosis and management across Latin American countries: an expert panel discussion. J Clin Lipidol. 2021;15(5):620–4. https://doi.org/10.1016/j.jacl.2021.10.004.
Brahm AJ, Hegele RA. Chylomicronaemia - current diagnosis and future therapies. Nat Rev Endocrinol. 2015;11(6):352–62. https://doi.org/10.1038/nrendo.2015.26.
Article CAS PubMed Google Scholar
Stroes E, Moulin P, Parhofer KG, Rebours V, Lohr JM, Averna M. Diagnostic algorithm for familial chylomicronemia syndrome. Atheroscler Suppl. 2017;23:1–7. https://doi.org/10.1016/j.atherosclerosissup.2016.10.002.
O’Dea L, St L, MacDougall J, Alexander VJ, Digenio A, Hubbard B, Arca M, et al. Differentiating familial chylomicronemia syndrome from multifactorial severe hypertriglyceridemia by clinical profiles. J Endocr Soc. 2019;3(12):2397–410. https://doi.org/10.1210/js.2019-00214.
Article CAS PubMed PubMed Central Google Scholar
Goldberg RB, Chait A. A comprehensive update on the chylomicronemia syndrome. Front Endocrinol. 2020;11:593931. https://doi.org/10.3389/fendo.2020.593931.
Hegele R, Ahmad Z, Ashraf A, Baldassarra A, Brown AS, Chait A, et al. Development and validation of clinical criteria to identify familial chylomicronemia syndrome (FCS) in North America. J Clin Lipidol. 2024;S1933–2874(24):00251–4. https://doi.org/10.1016/j.jacl.2024.09.008.
Williams L, Rhodes KS, Karmally W, Welstead LA, Alexander L, Sutton L. Familial chylomicronemia syndrome: bringing to life dietary recommendations throughout the life span. J Clin Lipidol. 2018;12(4):908–19. https://doi.org/10.1016/j.jacl.2018.04.010.
Thajer A, Skacel G, de Gier C, Greber-Platzer S. The effect of a fat-restricted diet in four patients with familial chylomicronemia syndrome: a long-term follow-up study. Children. 2021;8:1078. https://doi.org/10.3390/children8111078.
Article PubMed PubMed Central Google Scholar
Christian JB, Arondekar B, Buysman EK, Johnson SL, Seeger JD, Jacobson TA. Clinical and economic benefits observed when follow-up triglyceride levels are less than 500 mg/dL in patients with severe hypertriglyceridemia. J Clin Lipidol. 2012;6:450–61. https://doi.org/10.1016/J.JACL.2012.08.007.
Shamsudeen I, Hegele RA. Safety and efficacy of therapies for chylomicronemia. Expert Rev Clin Pharmacol. 2022;15:395–405. https://doi.org/10.1080/17512433.2022.2094768.
Article CAS PubMed Google Scholar
Gaudet D, Méthot J, Kastelein J. Gene therapy for lipoprotein lipase deficiency. Curr Opin Lipidol. 2012;23(4):310–20. https://doi.org/10.1097/MOL.0b013e3283555a7e.
Article CAS PubMed Google Scholar
Carpentier AC, Frisch F, Labbé SM, Gagnon R, de Wal J, Greentree S, et al. Effect of alipogene tiparvovec (AAV1-LPL(S447X)) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients. J Clin Endocrinol Metab. 2012;97(5):1635–44. https://doi.org/10.1210/jc.2011-3002.
Article CAS PubMed Google Scholar
Gaudet D, Méthot J, Déry S, Brisson D, Essiembre C, Tremblay G, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther. 2013;20(4):361–9. https://doi.org/10.1038/gt.2012.43.
Article CAS PubMed Google Scholar
Denison H, Nilsson C, Kujacic M, Löfgren L, Karlsson C, Knutsson M, et al. Proof of mechanism for the DGAT1 inhibitor AZD7687: results from a first- time-in-human single-dose study. Diabetes Obes Metab. 2013;15(2):136–43. https://doi.org/10.1111/dom.12002.
Article CAS PubMed Google Scholar
Denison H, Nilsson C, Löfgren L, Himmelmann A, Mårtensson G, Knutsson M, et al. Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial. Diabetes Obes Metab. 2014;16(4):334–43. https://doi.org/10.1111/dom.12221.
Article CAS PubMed Google Scholar
Lomitapide. Am J Cardiovasc Drugs. 2011;11(5):347–52. https://doi.org/10.2165/11533560-000000000-00000.
Cuchel M, Meagher EA, Du Toit TH, Blom DJ, Hegele RA, Averna M, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in homozygous familial hypercholesterolemia HHS Public Access. Lancet. 2013;381(9860):40–6. https://doi.org/10.1016/S0140-6736(12)61731-0.
Article CAS PubMed Google Scholar
Sacks FM, Stanesa M, Hegele RA. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide. JAMA Intern Med. 2014;174(3):443–7. https://doi.org/10.1001/jamainternmed.2013.13309.
Article CAS PubMed Google Scholar
Cefalù AB, Giammanco A, Noto D, Spina R, Cabibi D, Barbagallo CM, Averna M. Effectiveness and safety of lomitapide in a patient with familial chylomicronemia syndrome. Endocrine. 2020;71(2):344–50. https://doi.org/10.1007/s12020-020-02506-y.
Article CAS PubMed Google Scholar
Cefalù AB, D’Erasmo L, Iannuzzo G, Noto D, Giammanco A, Montalli A, et al. Efficacy and safety of lomitapide in familial chylomicronaemia syndrome. Atherosclerosis. 2022;359:13–9. https://doi.org/10.1016/j.atherosclerosis.2022.08.017.
Article CAS PubMed Google Scholar
Gouni-Berthold I, Schwarz J, Berthold HK. Updates in drug treatment of severe hypertriglyceridemia. Curr Atheroscler Rep. 2023;25(10):701–9. https://doi.org/10.1007/s11883-023-01140-z.
Article PubMed PubMed Central Google Scholar
Tomlinson B, Wu QY, Zhong YM, Li YH. Advances in dyslipidaemia treatments: focusing on ApoC3 and ANGPTL3 inhibitors. J Lipid Atheroscler. 2024;13(1):2–20. https://doi.org/10.12997/jla.2024.13.1.2.
Article CAS PubMed Google Scholar
Spagnuolo CM, Hegele RA. Recent advances in treating hypertriglyceridemia in patients at high risk of cardiovascular disease with apolipoprotein C-III inhibitors. Expert Opin Pharmacother. 2023;24:1013–20. https://doi.org/10.1080/14656566.2023.2206015.
Article CAS PubMed Google Scholar
Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg- HA. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41. https://doi.org/10.1056/NEJMoa1308027.
Article CAS PubMed Google Scholar
TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung and Blood Institute, Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. https://doi.org/10.1056/NEJMoa1307095.
Ng DS. Evolving ANGPTL-based lipid-lowering strategies and beyond. Curr Opin Lipidol. 2021;32:271–2. https://doi.org/10.1097/MOL.0000000000000764.
Comments (0)