From blood drops to biomarkers: a scoping review of microsampling in mass spectrometry-based proteomics

FDA-NIH Biomarker Working Group BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD), Bethesda (MD): Food and Drug Administration (US), National Institutes of Health (US). 2016. https://www.ncbi.nlm.nih.gov/pubmed/27010052. [Accessed February 15, 2025]

Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1(11):845–67.

Article  CAS  PubMed  Google Scholar 

Lei BUW, Prow TW. A review of microsampling techniques and their social impact. Biomed Microdevices. 2019;21(4):81.

Article  PubMed  PubMed Central  Google Scholar 

Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJC, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39(3):171–87.

Article  PubMed  Google Scholar 

Zakaria R, Allen KJ, Koplin JJ, Roche P, Greaves RF. Advantages and challenges of dried blood spot analysis by mass spectrometry across the total testing process. EJIFCC. 2016;27(4):288–317.

CAS  PubMed  PubMed Central  Google Scholar 

Baillargeon KR, Mace CR. Microsampling tools for collecting, processing, and storing blood at the point-of-care. Bioeng Transl Med. 2023;8(2): e10476.

Article  CAS  PubMed  Google Scholar 

Holub M, Tuschl K, Ratschmann R, Strnadova KA, Muhl A, Heinze G, et al. Influence of hematocrit and localisation of punch in dried blood spots on levels of amino acids and acylcarnitines measured by tandem mass spectrometry. Clin Chim Acta. 2006;373(1–2):27–31.

Article  CAS  PubMed  Google Scholar 

Capiau S, Stove VV, Lambert WE, Stove CP. Prediction of the hematocrit of dried blood spots via potassium measurement on a routine clinical chemistry analyzer. Anal Chem. 2013;85(1):404–10.

Article  CAS  PubMed  Google Scholar 

den Burger JC, Wilhelm AJ, Chahbouni AC, Vos RM, Sinjewel A, Swart EL. Haematocrit corrected analysis of creatinine in dried blood spots through potassium measurement. Anal Bioanal Chem. 2015;407(2):621–7.

Article  Google Scholar 

Alsous MM, Hawwa AF, McElnay JC. Hematocrit, blood volume, and surface area of dried blood spots—a quantitative model. Drug Test Anal. 2020;12(4):555–60.

Article  CAS  PubMed  Google Scholar 

Pauwels J, Gevaert K. Mass spectrometry-based clinical proteomics—a revival. Expert Rev Proteomics. 2021;18(6):411–4.

Article  CAS  PubMed  Google Scholar 

Geyer PE, Holdt LM, Teupser D, Mann M. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017;13(9):942.

Article  PubMed  PubMed Central  Google Scholar 

Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR. Liquid chromatography mass spectrometry-based proteomics: biological and technological aspects. Ann Appl Stat. 2010;4(4):1797–823.

Article  PubMed  PubMed Central  Google Scholar 

Budnik B, Levy E, Harmange G, Slavov N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 2018;19(1):161.

Article  PubMed  PubMed Central  Google Scholar 

Sinha A, Mann M. A beginner’s guide to mass spectrometry–based proteomics. Biochemist. 2020;42(5):64–9.

Article  CAS  Google Scholar 

Bader JM, Albrecht V, Mann M. MS-based proteomics of body fluids: the end of the beginning. Mol Cell Proteomics. 2023;22(7): 100577.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deutsch EW, Omenn GS, Sun Z, Maes M, Pernemalm M, Palaniappan KK, et al. Advances and utility of the human plasma proteome. J Proteome Res. 2021;20(12):5241–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 2011;10(4):1785–93.

Article  CAS  PubMed  Google Scholar 

Lehmann S, Picas A, Tiers L, Vialaret J, Hirtz C. Clinical perspectives of dried blood spot protein quantification using mass spectrometry methods. Crit Rev Clin Lab Sci. 2017;54(3):173–84.

Article  CAS  PubMed  Google Scholar 

Nakajima D, Ohara O, Kawashima Y. Toward proteome-wide exploration of proteins in dried blood spots using liquid chromatography-coupled mass spectrometry. Proteomics. 2021;21(23–24): e2100019.

Article  PubMed  Google Scholar 

Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.

Article  PubMed  Google Scholar 

Peters MDJ, Godfrey C, McInerney P, Khalil H, Larsen P, Marnie C, et al. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid Synth. 2022;20(4):953–68.

Article  PubMed  Google Scholar 

Mischak H, Allmaier G, Apweiler R, Attwood T, Baumann M, Benigni A, et al. Recommendations for biomarker identification and qualification in clinical proteomics. Sci Transl Med. 2010;2(46): 46ps2.

Article  Google Scholar 

R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: R Core Team; 2022.

RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA: RStudio Team; 2022.

Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, et al. Welcome to the Tidyverse. J Open Sour Softw. 2019;4(43):1686.

Article  Google Scholar 

Keshishian H, Burgess MW, Specht H, Wallace L, Clauser KR, Gillette MA, et al. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry. Nat Protoc. 2017;12(8):1683–701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chambers AG, Percy AJ, Hardie DB, Borchers CH. Comparison of proteins in whole blood and dried blood spot samples by LC/MS/MS. J Am Soc Mass Spectrom. 2013;24(9):1338–45.

Article  CAS  PubMed  Google Scholar 

Martin NJ, Bunch J, Cooper HJ. Dried blood spot proteomics: surface extraction of endogenous proteins coupled with automated sample preparation and mass spectrometry analysis. J Am Soc Mass Spectrom. 2013;24(8):1242–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whelan SA, Hendricks N, Dwight ZL, Fu Q, Moradian A, Van Eyk JE, et al. Assessment of a 60-biomarker health surveillance panel (HSP) on whole blood from remote sampling devices by targeted LC/MRM-MS and discovery DIA-MS analysis. Anal Chem. 2023;95(29):11007–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denniff P, Spooner N. Volumetric absorptive microsampling: a dried sample collection technique for quantitative bioanalysis. Anal Chem. 2014;86(16):8489–95.

Article  CAS  PubMed  Google Scholar 

Lenco J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholous P, et al. Reversed-phase liquid chromatography of peptides for bottom-up proteomics: a tutorial. J Proteome Res. 2022;21(12):2846–92.

Article  CAS  PubMed  Google Scholar 

Razavi M, Anderson NL, Yip R, Pope ME, Pearson TW. Multiplexed longitudinal measurement of protein biomarkers in DBS using an automated SISCAPA workflow. Bioanalysis. 2016;8(15):1597–609.

Article  CAS  PubMed  Google Scholar 

Bassini A, Sartoretto S, Jurisica L, Magno-Franca A, Anderson L, Pearson T, et al. Sportomics method to assess acute phase proteins in Olympic level athletes using dried blood spots and multiplex assay. Sci Rep. 2022;12(1):19824.

Article  CAS  PubMed 

Comments (0)

No login
gif