The interactome of tau phosphorylated at T217 in Alzheimer’s disease human brain tissue

Andres-Benito P, Carmona M, Pirla MJ, Torrejon-Escribano B, Del Rio JA, Ferrer I (2023) Dysregulated protein phosphorylation as main contributor of granulovacuolar degeneration at the first stages of neurofibrillary tangles pathology. Neuroscience 518:119–140. https://doi.org/10.1016/j.neuroscience.2021.10.023

Article  CAS  PubMed  Google Scholar 

Aragão Gomes L, Uytterhoeven V, Lopez-Sanmartin D, Tomé SO, Tousseyn T, Vandenberghe R et al (2021) Maturation of neuronal AD-tau pathology involves site-specific phosphorylation of cytoplasmic and synaptic tau preceding conformational change and fibril formation. Acta Neuropathol 141:173–192. https://doi.org/10.1007/s00401-020-02251-6

Article  CAS  PubMed  Google Scholar 

Ashton NJ, Benedet AL, Pascoal TA, Karikari TK, Lantero-Rodriguez J, Brum WS et al (2022) Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer’s disease. EBioMedicine 76:103836. https://doi.org/10.1016/j.ebiom.2022.103836

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashton NJ, Pascoal TA, Karikari TK, Benedet AL, Lantero-Rodriguez J, Brinkmalm G et al (2021) Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol 141:709–724. https://doi.org/10.1007/s00401-021-02275-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Askenazi M, Kavanagh T, Pires G, Ueberheide B, Wisniewski T, Drummond E (2023) Compilation of reported protein changes in the brain in Alzheimer’s disease. Nat Commun 14:4466. https://doi.org/10.1038/s41467-023-40208-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayyadevara S, Balasubramaniam M, Parcon PA, Barger SW, Griffin WST, Alla R et al (2016) Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer’s hippocampus from normal controls. Aging Cell 15:924–939. https://doi.org/10.1111/acel.12501

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babu JR, Geetha T, Wooten MW (2005) Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 94:192–203. https://doi.org/10.1111/j.1471-4159.2005.03181.x

Article  CAS  PubMed  Google Scholar 

Barthélemy NR, Bateman RJ, Hirtz C, Marin P, Becher F, Sato C et al (2020) Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimer’s Res Ther 12:26. https://doi.org/10.1186/s13195-020-00596-4

Article  CAS  Google Scholar 

Barthélemy NR, Horie K, Sato C, Bateman RJ (2020) Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med. https://doi.org/10.1084/jem.20200861

Article  PubMed  PubMed Central  Google Scholar 

Barthélemy NR, Saef B, Li Y, Gordon BA, He Y, Horie K et al (2023) CSF tau phosphorylation occupancies at T217 and T205 represent improved biomarkers of amyloid and tau pathology in Alzheimer’s disease. Nature Aging 3:391–401. https://doi.org/10.1038/s43587-023-00380-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Betters RK, Luhmann E, Gottschalk AC, Xu Z, Shin MR, Ptak CP et al (2023) Characterization of the tau interactome in human brain reveals isoform-dependent interaction with 14–3–3 family proteins. eNeuro. https://doi.org/10.1523/eneuro.0503-22.2023

Article  PubMed  PubMed Central  Google Scholar 

Choi H, Liu G, Mellacheruvu D, Tyers M, Gingras A-C, Nesvizhskii AI (2012) Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT. Curr Protoc Bioinform. https://doi.org/10.1002/0471250953.bi0815s39

Article  Google Scholar 

Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511

Article  CAS  PubMed  Google Scholar 

Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805. https://doi.org/10.1021/pr101065j

Article  CAS  PubMed  Google Scholar 

Delto Carolyn F, Heisler Frank F, Kuper J, Sander B, Kneussel M, Schindelin H (2015) The LisH motif of muskelin is crucial for oligomerization and governs intracellular localization. Structure 23:364–373. https://doi.org/10.1016/j.str.2014.11.016

Article  CAS  PubMed  Google Scholar 

Drummond E, Nayak S, Faustin A, Pires G, Hickman RA, Askenazi M et al (2017) Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathol 133:933–954. https://doi.org/10.1007/s00401-017-1691-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drummond E, Pires G, MacMurray C, Askenazi M, Nayak S, Bourdon M et al (2020) Phosphorylated tau interactome in the human Alzheimer’s disease brain. Brain. https://doi.org/10.1093/brain/awaa223

Article  PubMed  PubMed Central  Google Scholar 

Ellis MJ, Lekka C, Holden KL, Tulmin H, Seedat F, O’Brien DP et al (2024) Identification of high-performing antibodies for the reliable detection of Tau proteoforms by Western blotting and immunohistochemistry. Acta Neuropathol 147:87. https://doi.org/10.1007/s00401-024-02729-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gross A, Müller J, Chrustowicz J, Strasser A, Gottemukkala KV, Sherpa D et al (2024) Skraban-Deardorff intellectual disability syndrome-associated mutations in WDR26 impair CTLH E3 complex assembly. FEBS Lett 598:978–994. https://doi.org/10.1002/1873-3468.14866

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917. https://doi.org/10.1073/pnas.83.13.4913

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gunawardana CG, Mehrabian M, Wang X, Mueller I, Lubambo IB, Jonkman JEN et al (2015) The human tau interactome: binding to the ribonucleoproteome, and impaired binding of the proline-to-leucine mutant at position 301 (P301L) to chaperones and the proteasome. Mol Cell Proteom 14:3000–3014. https://doi.org/10.1074/mcp.M115.050724

Article  CAS  Google Scholar 

Hsieh Y-C, Guo C, Yalamanchili HK, Abreha M, Al-Ouran R, Li Y et al (2019) Tau-mediated disruption of the spliceosome triggers cryptic RNA splicing and neurodegeneration in Alzheimer’s disease. Cell Rep 29:301-316.e310. https://doi.org/10.1016/j.celrep.2019.08.104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Innella G, Scarano E, Palumbo P, Carella M, Severi G (2023) New clinical features in an adult patient with Skraban-Deardorff syndrome. Am J Med Genet A 191:306–309. https://doi.org/10.1002/ajmg.a.63012

Article  PubMed  Google Scholar 

Janelidze S, Bali D, Ashton NJ, Barthélemy NR, Vanbrabant J, Stoops E et al (2023) Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer’s disease. Brain 146:1592–1601. https://doi.org/10.1093/brain/awac333

Article  PubMed  Google Scholar 

Jiang L, Lin W, Zhang C, Ash PEA, Verma M, Kwan J et al (2021) Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy. Mol Cell 81:4209-4227.e4212. https://doi.org/10.1016/j.molcel.2021.07.038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L et al (2020) Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 26:769–780. https://doi.org/10.1038/s41591-020-0815-6

Article 

Comments (0)

No login
gif