Andres-Benito P, Carmona M, Pirla MJ, Torrejon-Escribano B, Del Rio JA, Ferrer I (2023) Dysregulated protein phosphorylation as main contributor of granulovacuolar degeneration at the first stages of neurofibrillary tangles pathology. Neuroscience 518:119–140. https://doi.org/10.1016/j.neuroscience.2021.10.023
Article CAS PubMed Google Scholar
Aragão Gomes L, Uytterhoeven V, Lopez-Sanmartin D, Tomé SO, Tousseyn T, Vandenberghe R et al (2021) Maturation of neuronal AD-tau pathology involves site-specific phosphorylation of cytoplasmic and synaptic tau preceding conformational change and fibril formation. Acta Neuropathol 141:173–192. https://doi.org/10.1007/s00401-020-02251-6
Article CAS PubMed Google Scholar
Ashton NJ, Benedet AL, Pascoal TA, Karikari TK, Lantero-Rodriguez J, Brum WS et al (2022) Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer’s disease. EBioMedicine 76:103836. https://doi.org/10.1016/j.ebiom.2022.103836
Article CAS PubMed PubMed Central Google Scholar
Ashton NJ, Pascoal TA, Karikari TK, Benedet AL, Lantero-Rodriguez J, Brinkmalm G et al (2021) Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol 141:709–724. https://doi.org/10.1007/s00401-021-02275-6
Article CAS PubMed PubMed Central Google Scholar
Askenazi M, Kavanagh T, Pires G, Ueberheide B, Wisniewski T, Drummond E (2023) Compilation of reported protein changes in the brain in Alzheimer’s disease. Nat Commun 14:4466. https://doi.org/10.1038/s41467-023-40208-x
Article CAS PubMed PubMed Central Google Scholar
Ayyadevara S, Balasubramaniam M, Parcon PA, Barger SW, Griffin WST, Alla R et al (2016) Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer’s hippocampus from normal controls. Aging Cell 15:924–939. https://doi.org/10.1111/acel.12501
Article CAS PubMed PubMed Central Google Scholar
Babu JR, Geetha T, Wooten MW (2005) Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 94:192–203. https://doi.org/10.1111/j.1471-4159.2005.03181.x
Article CAS PubMed Google Scholar
Barthélemy NR, Bateman RJ, Hirtz C, Marin P, Becher F, Sato C et al (2020) Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimer’s Res Ther 12:26. https://doi.org/10.1186/s13195-020-00596-4
Barthélemy NR, Horie K, Sato C, Bateman RJ (2020) Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med. https://doi.org/10.1084/jem.20200861
Article PubMed PubMed Central Google Scholar
Barthélemy NR, Saef B, Li Y, Gordon BA, He Y, Horie K et al (2023) CSF tau phosphorylation occupancies at T217 and T205 represent improved biomarkers of amyloid and tau pathology in Alzheimer’s disease. Nature Aging 3:391–401. https://doi.org/10.1038/s43587-023-00380-7
Article CAS PubMed PubMed Central Google Scholar
Betters RK, Luhmann E, Gottschalk AC, Xu Z, Shin MR, Ptak CP et al (2023) Characterization of the tau interactome in human brain reveals isoform-dependent interaction with 14–3–3 family proteins. eNeuro. https://doi.org/10.1523/eneuro.0503-22.2023
Article PubMed PubMed Central Google Scholar
Choi H, Liu G, Mellacheruvu D, Tyers M, Gingras A-C, Nesvizhskii AI (2012) Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT. Curr Protoc Bioinform. https://doi.org/10.1002/0471250953.bi0815s39
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511
Article CAS PubMed Google Scholar
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805. https://doi.org/10.1021/pr101065j
Article CAS PubMed Google Scholar
Delto Carolyn F, Heisler Frank F, Kuper J, Sander B, Kneussel M, Schindelin H (2015) The LisH motif of muskelin is crucial for oligomerization and governs intracellular localization. Structure 23:364–373. https://doi.org/10.1016/j.str.2014.11.016
Article CAS PubMed Google Scholar
Drummond E, Nayak S, Faustin A, Pires G, Hickman RA, Askenazi M et al (2017) Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathol 133:933–954. https://doi.org/10.1007/s00401-017-1691-0
Article CAS PubMed PubMed Central Google Scholar
Drummond E, Pires G, MacMurray C, Askenazi M, Nayak S, Bourdon M et al (2020) Phosphorylated tau interactome in the human Alzheimer’s disease brain. Brain. https://doi.org/10.1093/brain/awaa223
Article PubMed PubMed Central Google Scholar
Ellis MJ, Lekka C, Holden KL, Tulmin H, Seedat F, O’Brien DP et al (2024) Identification of high-performing antibodies for the reliable detection of Tau proteoforms by Western blotting and immunohistochemistry. Acta Neuropathol 147:87. https://doi.org/10.1007/s00401-024-02729-7
Article CAS PubMed PubMed Central Google Scholar
Gross A, Müller J, Chrustowicz J, Strasser A, Gottemukkala KV, Sherpa D et al (2024) Skraban-Deardorff intellectual disability syndrome-associated mutations in WDR26 impair CTLH E3 complex assembly. FEBS Lett 598:978–994. https://doi.org/10.1002/1873-3468.14866
Article CAS PubMed PubMed Central Google Scholar
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917. https://doi.org/10.1073/pnas.83.13.4913
Article CAS PubMed PubMed Central Google Scholar
Gunawardana CG, Mehrabian M, Wang X, Mueller I, Lubambo IB, Jonkman JEN et al (2015) The human tau interactome: binding to the ribonucleoproteome, and impaired binding of the proline-to-leucine mutant at position 301 (P301L) to chaperones and the proteasome. Mol Cell Proteom 14:3000–3014. https://doi.org/10.1074/mcp.M115.050724
Hsieh Y-C, Guo C, Yalamanchili HK, Abreha M, Al-Ouran R, Li Y et al (2019) Tau-mediated disruption of the spliceosome triggers cryptic RNA splicing and neurodegeneration in Alzheimer’s disease. Cell Rep 29:301-316.e310. https://doi.org/10.1016/j.celrep.2019.08.104
Article CAS PubMed PubMed Central Google Scholar
Innella G, Scarano E, Palumbo P, Carella M, Severi G (2023) New clinical features in an adult patient with Skraban-Deardorff syndrome. Am J Med Genet A 191:306–309. https://doi.org/10.1002/ajmg.a.63012
Janelidze S, Bali D, Ashton NJ, Barthélemy NR, Vanbrabant J, Stoops E et al (2023) Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer’s disease. Brain 146:1592–1601. https://doi.org/10.1093/brain/awac333
Jiang L, Lin W, Zhang C, Ash PEA, Verma M, Kwan J et al (2021) Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy. Mol Cell 81:4209-4227.e4212. https://doi.org/10.1016/j.molcel.2021.07.038
Article CAS PubMed PubMed Central Google Scholar
Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L et al (2020) Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 26:769–780. https://doi.org/10.1038/s41591-020-0815-6
Comments (0)