Predicting renal function using fundus photography: role of confounders

1. Fox CS, Matsushita K, Woodward M, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 2012;380:1662–1673.
crossref pmid pmc
2. Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2016 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis 2017;69(3 Suppl 1):A7–A8.
pmid pmc
3. Lee MJ, Ha KH, Kim DJ, Park I. Trends in the incidence, prevalence, and mortality of end-stage kidney disease in South Korea. Diabetes Metab J 2020;44:933–937.
crossref pmid pmc pdf
4. Qaseem A, Hopkins RH Jr, Sweet DE, et al. Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease: a clinical practice guideline from the American College of Physicians. Ann Intern Med 2013;159:835–847.
crossref pmid pdf
5. Ene-Iordache B, Perico N, Bikbov B, et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study. Lancet Glob Health 2016;4:e307–e319.
crossref pmid
6. Kim DW, Rhee H. Interpretation of estimated glomerular filtration rate. Korean J Med 2023;98:45–51.
crossref pdf
7. Wong CW, Wong TY, Cheng CY, Sabanayagam C. Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways. Kidney Int 2014;85:1290–1302.
crossref pmid
8. Wong TY, Klein R, Couper DJ, et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. Lancet 2001;358:1134–1140.
crossref pmid
9. Wagner SK, Fu DJ, Faes L, et al. Insights into systemic disease through retinal imaging-based oculomics. Transl Vis Sci Technol 2020;9:6.
crossref pmid pmc
10. Wen Y, Chen L, Qiao L, Deng Y, Zhou C. On the deep learning-based age prediction of color fundus images and correlation with ophthalmic diseases. In : Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2020 Dec 16–19; Seoul: IEEE, 2020. p. 1171–1175.
crossref
11. Munk MR, Kurmann T, Márquez-Neila P, Zinkernagel MS, Wolf S, Sznitman R. Assessment of patient specific information in the wild on fundus photography and optical coherence tomography. Sci Rep 2021;11:8621.
crossref pmid pmc pdf
12. Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2018;2:158–164.
crossref pmid pdf
13. Kim YD, Noh KJ, Byun SJ, et al. Effects of hypertension, diabetes, and smoking on age and sex prediction from retinal fundus images. Sci Rep 2020;10:4623.
crossref pmid pmc pdf
14. Kim JH, Jo E, Ryu S, et al. A deep learning ensemble method to visual acuity measurement using fundus images. App Sci 2022;12:3190.
crossref
15. Ishii K, Asaoka R, Omoto T, et al. Predicting intraocular pressure using systemic variables or fundus photography with deep learning in a health examination cohort. Sci Rep 2021;11:3687.
crossref pmid pmc pdf
16. Sabanayagam C, Xu D, Ting DSW, et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. Lancet Digit Health 2020;2:e295–e302.
crossref pmid
17. James G, Mohankumar G, Cooper A, et al. Predicting renal disease and associated complications through deep learning using retinal fundus images linked to clinical data. SSRN [Pre-print] 2021. [cited 2024 Feb 1]. Availble from: https://dx.doi.org/10.2139/ssrn.3980907 .
crossref
18. Rim TH, Lee G, Kim Y, et al. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Lancet Digit Health 2020;2:e526–e536.
crossref pmid
19. Zhang K, Liu X, Xu J, et al. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images. Nat Biomed Eng 2021;5:533–545.
crossref pmid pdf
20. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–612.
crossref pmid pmc pdf
21. Summary of recommendation statements. Kidney Int Suppl (2011) 2013;3:5–14.
crossref pmid pmc
22. Tan M, Le Q. EfficientNet: rethinking model scaling for convolutional neural networks. In : Proceedings of the 36th International Conference on Machine Learning; 2019 Jun 9–15; Long Beach (CA): PMLR, 2019. p. 6105–6114. 23. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In : Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27–30; Las Vegas (NV): IEEE, 2016. p. 2921–2929.
crossref
24. Grunwald JE, Alexander J, Maguire M, et al. Prevalence of ocular fundus pathology in patients with chronic kidney disease. Clin J Am Soc Nephrol 2010;5:867–873.
crossref pmid pmc
25. Gao B, Zhu L, Pan Y, Yang S, Zhang L, Wang H. Ocular fundus pathology and chronic kidney disease in a Chinese population. BMC Nephrol 2011;12:62.
crossref pmid pmc pdf
26. Kang EY, Hsieh YT, Li CH, et al. Deep learning-based detection of early renal function impairment using retinal fundus images: model development and validation. JMIR Med Inform 2020;8:e23472.
crossref pmid pmc
27. Waisberg E, Ong J, Zaman N, et al. A non-invasive approach to monitor anemia during long-duration spaceflight with retinal fundus images and deep learning. Life Sci Space Res (Amst) 2022;33:69–71.
crossref pmid
28. Mitani A, Huang A, Venugopalan S, et al. Detection of anaemia from retinal fundus images via deep learning. Nat Biomed Eng 2020;4:18–27.
crossref pmid pdf
29. Zhao X, Meng L, Su H, et al. Deep-learning-based hemoglobin concentration prediction and anemia screening using ultra-wide field fundus images. Front Cell Dev Biol 2022;10:888268.
crossref pmid pmc
30. Tent H, Rook M, Stevens LA, et al. Renal function equations before and after living kidney donation: a within-individual comparison of performance at different levels of renal function. Clin J Am Soc Nephrol 2010;5:1960–1968.
pmid pmc
31. White CA, Akbari A, Doucette S, Fergusson D, Knoll GA. Estimating glomerular filtration rate in kidney transplantation: is the new chronic kidney disease epidemiology collaboration equation any better? Clin Chem 2010;56:474–477.
crossref pmid pdf
32. Cirillo M, Lombardi C, Luciano MG, Bilancio G, Anastasio P, De Santo NG. Estimation of GFR: a comparison of new and established equations. Am J Kidney Dis 2010;56:802–804.
crossref pmid
33. Murata K, Baumann NA, Saenger AK, Larson TS, Rule AD, Lieske JC. Relative performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate among patients with varied clinical presentations. Clin J Am Soc Nephrol 2011;6:1963–1972.
crossref pmid pmc
34. Matsushita K, Mahmoodi BK, Woodward M, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 2012;307:1941–1951.
pmid

Comments (0)

No login
gif