Tissue-culture free gene editing in plants using virus-induced gene editing: a brief overview

Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DB, Kellner MJ, Regev A, Lander ES. RNA targeting with CRISPR–Cas13. Nature. 2017;550(7675):280–4. https://doi.org/10.1038/nature24049.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Adams MJ, Antoniw JF, Bar-Joseph M, Brunt AA, Candresse T, Foster GD, et al. Virology division news: the new plant virus family flexiviridae and assessment of molecular criteria for species demarcation. Arch Virol. 2004;149:1045–60. https://doi.org/10.1007/s00705-004-0304-0.

Article  PubMed  CAS  Google Scholar 

Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A. An outlook on global regulatory landscape for genome-edited crops. Int Mol J Sci. 2021;22:11753. https://doi.org/10.3390/ijms222111753.

Article  CAS  Google Scholar 

Ali Z, Abul-Faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant. 2015;8(8):1288–91. https://doi.org/10.1016/j.molp.2015.02.011.

Article  PubMed  CAS  Google Scholar 

Ali Z, Eid A, Ali S, Mahfouz MM. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Res. 2018;244:333–7. https://doi.org/10.1016/j.virusres.2017.10.009.

Article  PubMed  CAS  Google Scholar 

Alok A, Chauhan H, Upadhyay SK, Pandey A, Kumar J, Singh K. Compendium of plant-specific CRISPR vectors and their technical advantages. Life. 2021;11(10):1021. https://doi.org/10.3390/life11101021.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Amutha S, Hiekel S, Hartmann F, Lorenz J, Dabhi RV, Dreissig S, et al. Barley stripe mosaic virus-mediated somatic and heritable gene editing in barley (Hordeum vulgare L.). Front Plant Sci. 2023;14:1201446. https://doi.org/10.3389/fpls.2023.1201446.

Article  Google Scholar 

Ariga H, Toki S, Ishibashi K. Potato virus X vector-mediated DNA-free genome editing in plants. Plant Cell Physiol. 2020;61(11):1946–53. https://doi.org/10.1093/pcp/pcaa123.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baysal C, Kausch AP, Cody JP, Altpeter F, Voytas DF. Rapid and efficient in planta genome editing in sorghum using foxtail mosaic virus-mediated sgRNA delivery. Plant J. 2024. https://doi.org/10.1111/tpj.17196.

Article  PubMed  PubMed Central  Google Scholar 

Bigelyte G, Young JK, Karvelis T, Budre K, Zedaveinyte R, Djukanovic V, Van Ginkel E, Paulraj S, Gasior S, Jones S, Feigenbutz L. Miniature type VF CRISPR-Cas nucleases enable targeted DNA modification in cells. Nat Commun. 2021;12(1):6191. https://doi.org/10.1038/s41467-021-26469-4.

Article  PubMed  PubMed Central  Google Scholar 

Cebrian-Serrano A, Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome. 2017;28:247–61. https://doi.org/10.1007/s00335-017-9697-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chatzivassiliou EK. An annotated list of legume-infecting viruses in the light of metagenomics. Plants. 2021;10(7):1413. https://doi.org/10.3390/plants10071413.

Article  PubMed  PubMed Central  Google Scholar 

Chauhan H, Alok A, Upadhyay SK, Pandey A, Singh K. CRISPR/Cas9 edited StbHLH47 lines exhibit altered expression profiling of iron regulating genes and increased iron content in Solanum tuberosum. Curr Plant Biol. 2024. https://doi.org/10.1016/j.cpb.2024.100354.

Article  Google Scholar 

Chiong KT, Cody WB, Scholthof HB. RNA silencing suppressor-influenced performance of a virus vector delivering both guide RNA and Cas9 for CRISPR gene editing. Sci Rep. 2021;11(1):6769. https://doi.org/10.1038/s41598-021-85366-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ckurshumova W, Smirnova T, Marcos D, Zayed Y, Berleth T. Irrepressible MONOPTEROS/ARF 5 promotes de novo shoot formation. New Phytol. 2014;204(3):556–66. https://doi.org/10.1111/nph.13014.

Article  PubMed  CAS  Google Scholar 

Cody WB, Scholthof HB. Plant virus vectors 3.0: transitioning into synthetic genomics. Annu Rev Phytopathol. 2019;57:211–30. https://doi.org/10.1146/annurev-phyto-082718-100301.

Article  PubMed  CAS  Google Scholar 

Cody WB, Scholthof HB, Mirkov TE. Multiplexed gene editing and protein overexpression using a tobacco mosaic virus viral vector. Plant Physiol. 2017;175(1):23–35. https://doi.org/10.1104/pp.17.00411.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Elisabeth Johansen I, Lund OS. Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J. 2004;40(4):622–31. https://doi.org/10.1111/j.1365-313X.2004.02233.x.

Article  PubMed  CAS  Google Scholar 

East-Seletsky A, O’Connell MR, Knight SC, Burstein D, Cate JH, Tjian R, Doudna JA. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature. 2016;538(7624):270–3. https://doi.org/10.1038/nature19802.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ellison EE, Nagalakshmi U, Gamo ME, Huang PJ, Dinesh-Kumar S, Voytas DF. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat Plants. 2020;6(6):620–4. https://doi.org/10.1038/s41477-020-0670-y.

Article  PubMed  CAS  Google Scholar 

Gallois JL, Woodward C, Reddy GV, Sablowski R. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. https://doi.org/10.1242/dev.129.13.3207.

Ghoshal B, Vong B, Picard CL, Feng S, Tam JM, Jacobsen SE. A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in Arabidopsis thaliana. PLoS Genet. 2020;16(12):1008983. https://doi.org/10.1371/journal.pgen.1008983.

Article  CAS  Google Scholar 

Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362(6416):839–42. https://doi.org/10.1126/science.aav4294.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hipper C, Brault V, Ziegler-Graff V, Revers F. Viral and cellular factors involved in phloem transport of plant viruses. Front Plant Sci. 2013;4:154. https://doi.org/10.3389/fpls.2013.00154.

Article  PubMed  PubMed Central  Google Scholar 

Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD. Structure and engineering of Francisella novicida Cas9. Cell. 2016;164(5):950–61. https://doi.org/10.1016/j.cell.2016.01.039.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hoyer JS, Wilkins OW, Munshi A, Wiese E, Dubey D, Renard S. Rapid multilocus adaptation of clonal cabbage leaf curl virus populations to Arabidopsis thaliana. Phytobiomes J. 2022;6(3):227–35. https://doi.org/10.1094/PBIOMES-12-21-0077-R.

Article  Google Scholar 

Ishibashi K, Sukegawa S, Endo M, Hara N, Nureki O, Saika H, Toki S. Systemic delivery of engineered compact AsCas12f by a positive-strand RNA virus vector enables highly efficient targeted mutagenesis in plants. Front Plant Sci. 2024;10(15):1454554. https://doi.org/10.3389/fpls.2024.1454554.

Article  Google Scholar 

Jackson AO, Lim HS, Bragg J, Ganesan U, Lee MY. Hordeivirus replication, movement, and pathogenesis. Ann Rev Phytopathol. 2009;47(1):385–422. https://doi.org/10.1146/annurev-phyto-080508-081733.

Article  CAS  Google Scholar 

Jiang N, Zhang C, Liu JY, Guo ZH, Zhang ZY, Han CG, Wang Y. Development of Beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. Plant Biotechnol J. 2019;17(7):1302–15. https://doi.org/10.1111/pbi.13055.

Comments (0)

No login
gif