Understanding lipid-mediated defense mechanisms in plant responses to abiotic stress

Abd-El-Haliem A, Meijer HJ, Tameling WI, Vossen JH, Joosten MH. Defense activation triggers differential expression of phospholipase-C (PLC) genes and elevated temperature induces phosphatidic acid (PA) accumulation in tomato. Plant Signal Behav. 2012;7(9):1073–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali MS, Baek KH. Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci. 2020;21(2):621.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali U, Li H, Wang X, Guo L. Emerging roles of sphingolipid signaling in plant response to biotic and abiotic stresses. Mol Plant. 2018;11(11):1328–43.

Article  CAS  PubMed  Google Scholar 

Amiri Forotaghe Z, Souri MK, Ghanbari Jahromi M, Mohammadi TA. Influence of humic acid application on onion growth characteristics under water deficit conditions. J Plant Nutr. 2022;45(7):1030–40.

Article  CAS  Google Scholar 

Arisz SA, van Wijk R, Roels W, Zhu JK, Haring MA, Munnik T. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Front Plant Sci. 2013;4:1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balogh G, Péter M, Glatz A, Gombos I, Török Z, Horváth I, Harwood JL, Vígh L. Key role of lipids in heat stress management. FEBS Lett. 2013;587(13):1970–80.

Article  CAS  PubMed  Google Scholar 

Bargmann BO, Laxalt AM, Riet BT, Van Schooten B, Merquiol E, Testerink C, Haring MA, Bartels D, Munnik T. Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 2009;50(1):78–89.

Article  CAS  PubMed  Google Scholar 

Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014;65:1229–40.

Article  CAS  PubMed  Google Scholar 

Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the “death” connection and beyond. Front Plant Sci. 2012;3:68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burnette RN, Gunesekera BM, Gillaspy GE. An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol. 2003;132(2):1011–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Wang Y, Chen Y, Yang X, Wang S, Yu T, Zhou Y, Cui X. Characterization of molecular properties and expression of gene GmPLMT and its effects on the production of lipid metabolites in soybean and arabidopsis thaliana. Agronomy. 2021;11(12):2454.

Article  CAS  Google Scholar 

Choudhary R, Ahmad F, Kaya C, Upadhyay SK, Muneer S, Kumar V, Meena M, Liu H, Upadhyay H, Seth CS. Decrypting proteomics, transcriptomics, genomics, and integrated omics for augmenting the abiotic, biotic, and climate change stress resilience in plants. J Plant Physiol. 2025;9:154430.

Article  Google Scholar 

Coursol S, Fan LM, Stunff HL, Spiegel S, Gilroy S, Assmann SM. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature. 2003;423(6940):651–4.

Article  CAS  PubMed  Google Scholar 

D’Arrigo P, Servi S. Synthesis of lysophospholipids. Molecules. 2010;15:1354–77.

Article  PubMed  PubMed Central  Google Scholar 

Danquah A, De Zélicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv. 2014;32(1):40–52.

Article  CAS  PubMed  Google Scholar 

De Domenico S, Bonsegna S, Horres R, Pastor V, Taurino M, Poltronieri P, Imtiaz M, Kahl G, Flors V, Winter P, Santino A. Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. Plant Physiol Biochem. 2012;61:115–22.

Article  PubMed  Google Scholar 

de Ollas C, Arbona V, GóMez-Cadenas A. Jasmonoyl isoleucine accumulation is needed for abscisic acid build-up in roots of A rabidopsis under water stress conditions. Plant Cell Environ. 2015;38(10):2157–70.

Article  PubMed  Google Scholar 

DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H. Rapid accumulation of phosphatidylinositol 4, 5-bisphosphate and inositol 1, 4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant physiol. 2001;126(2):759–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding Y, Avramova Z, Fromm M. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J. 2011;66(5):735–44.

Article  CAS  PubMed  Google Scholar 

Distéfano AM, Scuffi D, García-Mata C, Lamattina L, Laxalt AM. Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. Planta. 2012;236:1899–907.

Article  PubMed  Google Scholar 

Drøbak BK, Watkins PA. Inositol (1, 4, 5) trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS lett. 2000;481(3):240–4.

Article  PubMed  Google Scholar 

Du ZY, Xiao S, Chen QF, Chye ML. Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol. 2010;152(3):1585–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dutilleul C, Benhassaine-Kesri G, Demandre C, Rézé N, Launay A, Pelletier S, Renou JP, Zachowski A, Baudouin E, Guillas I. Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. New Phytol. 2012;194(1):181–91.

Article  CAS  PubMed  Google Scholar 

Gao K, Liu YL, Li B, Zhou RG, Sun DY, Zheng SZ. Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance. Plant Cell Physiol. 2014;55(11):1873–83.

Article  CAS  PubMed  Google Scholar 

Gao XP, Wang XF, Lu YF, Zhang LY, Shen YY, Liang Z, Zhang DP. Jasmonic acid is involved in the water-stress-induced betaine accumulation in pear leaves. Plant Cell Environ. 2004;27(4):497–507.

Article  CAS  Google Scholar 

Graether SP, Boddington KF. Disorder and function: a review of the dehydrin protein family. Front Plant Sci. 2014;5:576.

Article  PubMed  PubMed Central  Google Scholar 

Grebner W, Stingl NE, Oenel A, Mueller MJ, Berger S. Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol. 2013;161(4):2159–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guillas I, Guellim A, Rezé N, Baudouin E. Long chain base changes triggered by a short exposure of Arabidopsis to low temperature are altered by AHb1 non-symbiotic haemoglobin overexpression. Plant Physiol Biochem. 2013;63:191–5.

Article  CAS  PubMed  Google Scholar 

Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell. 2012;24(5):2200–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo L, Mishra G, Taylor K, Wang X. Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem. 2011;286(15):13336–45.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif