Abd-El-Haliem A, Meijer HJ, Tameling WI, Vossen JH, Joosten MH. Defense activation triggers differential expression of phospholipase-C (PLC) genes and elevated temperature induces phosphatidic acid (PA) accumulation in tomato. Plant Signal Behav. 2012;7(9):1073–8.
Article CAS PubMed PubMed Central Google Scholar
Ali MS, Baek KH. Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci. 2020;21(2):621.
Article CAS PubMed PubMed Central Google Scholar
Ali U, Li H, Wang X, Guo L. Emerging roles of sphingolipid signaling in plant response to biotic and abiotic stresses. Mol Plant. 2018;11(11):1328–43.
Article CAS PubMed Google Scholar
Amiri Forotaghe Z, Souri MK, Ghanbari Jahromi M, Mohammadi TA. Influence of humic acid application on onion growth characteristics under water deficit conditions. J Plant Nutr. 2022;45(7):1030–40.
Arisz SA, van Wijk R, Roels W, Zhu JK, Haring MA, Munnik T. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Front Plant Sci. 2013;4:1.
Article CAS PubMed PubMed Central Google Scholar
Balogh G, Péter M, Glatz A, Gombos I, Török Z, Horváth I, Harwood JL, Vígh L. Key role of lipids in heat stress management. FEBS Lett. 2013;587(13):1970–80.
Article CAS PubMed Google Scholar
Bargmann BO, Laxalt AM, Riet BT, Van Schooten B, Merquiol E, Testerink C, Haring MA, Bartels D, Munnik T. Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 2009;50(1):78–89.
Article CAS PubMed Google Scholar
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014;65:1229–40.
Article CAS PubMed Google Scholar
Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the “death” connection and beyond. Front Plant Sci. 2012;3:68.
Article CAS PubMed PubMed Central Google Scholar
Burnette RN, Gunesekera BM, Gillaspy GE. An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol. 2003;132(2):1011–9.
Article CAS PubMed PubMed Central Google Scholar
Chen Z, Wang Y, Chen Y, Yang X, Wang S, Yu T, Zhou Y, Cui X. Characterization of molecular properties and expression of gene GmPLMT and its effects on the production of lipid metabolites in soybean and arabidopsis thaliana. Agronomy. 2021;11(12):2454.
Choudhary R, Ahmad F, Kaya C, Upadhyay SK, Muneer S, Kumar V, Meena M, Liu H, Upadhyay H, Seth CS. Decrypting proteomics, transcriptomics, genomics, and integrated omics for augmenting the abiotic, biotic, and climate change stress resilience in plants. J Plant Physiol. 2025;9:154430.
Coursol S, Fan LM, Stunff HL, Spiegel S, Gilroy S, Assmann SM. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature. 2003;423(6940):651–4.
Article CAS PubMed Google Scholar
D’Arrigo P, Servi S. Synthesis of lysophospholipids. Molecules. 2010;15:1354–77.
Article PubMed PubMed Central Google Scholar
Danquah A, De Zélicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv. 2014;32(1):40–52.
Article CAS PubMed Google Scholar
De Domenico S, Bonsegna S, Horres R, Pastor V, Taurino M, Poltronieri P, Imtiaz M, Kahl G, Flors V, Winter P, Santino A. Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. Plant Physiol Biochem. 2012;61:115–22.
de Ollas C, Arbona V, GóMez-Cadenas A. Jasmonoyl isoleucine accumulation is needed for abscisic acid build-up in roots of A rabidopsis under water stress conditions. Plant Cell Environ. 2015;38(10):2157–70.
DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H. Rapid accumulation of phosphatidylinositol 4, 5-bisphosphate and inositol 1, 4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant physiol. 2001;126(2):759–69.
Article CAS PubMed PubMed Central Google Scholar
Ding Y, Avramova Z, Fromm M. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J. 2011;66(5):735–44.
Article CAS PubMed Google Scholar
Distéfano AM, Scuffi D, García-Mata C, Lamattina L, Laxalt AM. Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. Planta. 2012;236:1899–907.
Drøbak BK, Watkins PA. Inositol (1, 4, 5) trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS lett. 2000;481(3):240–4.
Du ZY, Xiao S, Chen QF, Chye ML. Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol. 2010;152(3):1585–97.
Article CAS PubMed PubMed Central Google Scholar
Dutilleul C, Benhassaine-Kesri G, Demandre C, Rézé N, Launay A, Pelletier S, Renou JP, Zachowski A, Baudouin E, Guillas I. Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. New Phytol. 2012;194(1):181–91.
Article CAS PubMed Google Scholar
Gao K, Liu YL, Li B, Zhou RG, Sun DY, Zheng SZ. Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance. Plant Cell Physiol. 2014;55(11):1873–83.
Article CAS PubMed Google Scholar
Gao XP, Wang XF, Lu YF, Zhang LY, Shen YY, Liang Z, Zhang DP. Jasmonic acid is involved in the water-stress-induced betaine accumulation in pear leaves. Plant Cell Environ. 2004;27(4):497–507.
Graether SP, Boddington KF. Disorder and function: a review of the dehydrin protein family. Front Plant Sci. 2014;5:576.
Article PubMed PubMed Central Google Scholar
Grebner W, Stingl NE, Oenel A, Mueller MJ, Berger S. Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol. 2013;161(4):2159–70.
Article CAS PubMed PubMed Central Google Scholar
Guillas I, Guellim A, Rezé N, Baudouin E. Long chain base changes triggered by a short exposure of Arabidopsis to low temperature are altered by AHb1 non-symbiotic haemoglobin overexpression. Plant Physiol Biochem. 2013;63:191–5.
Article CAS PubMed Google Scholar
Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell. 2012;24(5):2200–12.
Article CAS PubMed PubMed Central Google Scholar
Guo L, Mishra G, Taylor K, Wang X. Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem. 2011;286(15):13336–45.
Comments (0)