Zuckerman SL, Bilsky MH, Laufer I (2018) Chordomas of the skull base, mobile spine, and sacrum: An epidemiologic investigation of presentation, treatment, and survival. World Neurosurg [Internet].;113:e618–27. Available from: https://doi.org/10.1016/j.wneu.2018.02.109
Łajczak PM, Jóźwik K (2024) Artificial intelligence– an aid for physicians in chordoma management? A systematic review of current applications. Oncol Clin Pract [Internet].; Available from: https://doi.org/10.5603/ocp.99368
Passer JZ, Alvarez-Breckenridge C, Rhines L, DeMonte F, Tatsui C, Raza SM (2021) Surgical management of skull base and spine chordomas. Curr Treat Options Oncol [Internet].;22(5):40. Available from: https://doi.org/10.1007/s11864-021-00838-z
Zhai Y, Bai J, Li M, Wang S, Li C, Wei X et al (2021) A nomogram to predict the progression-free survival of clival chordoma. J Neurosurg [Internet].;134(1):144–52. Available from: https://doi.org/10.3171/2019.10.jns192414
Chambers KJ, Lin DT, Meier J, Remenschneider A, Herr M, Gray ST (2014) Incidence and survival patterns of cranial chordoma in the United States: Survival Outcomes Cranial Chordoma. Laryngoscope [Internet].;124(5):1097–102. Available from: https://doi.org/10.1002/lary.24420
Wang L, Wu Z, Tian K, Wang K, Li D, Ma J et al (2017) Clinical features and surgical outcomes of patients with skull base chordoma: a retrospective analysis of 238 patients. J Neurosurg [Internet].;127(6):1257–67. Available from: https://doi.org/10.3171/2016.9.JNS16559
Huang JF, Chen D, Sang CM, Zheng XQ, Lin JL, Lin Y et al (2019) Nomogram for individualized prediction and prognostic factors for survival in patients with primary spinal chordoma: A population-based longitudinal cohort study. World Neurosurg [Internet].;128:e603–14. Available from: https://doi.org/10.1016/j.wneu.2019.04.217
Lin K, Song K, Wang S, Jiang L, Wang H, Dong J (2020) Predict overall survival of spinal conventional chordoma: Development and assessment of a new predictive nomogram. Clin Neurol Neurosurg [Internet].;197(106174):106174. Available from: https://doi.org/10.1016/j.clineuro.2020.106174
Hajikarimloo B, Mohammadzadeh I, Nazari MA, Habibi MA, Taghipour P, Alaei SA et al (2025) Prediction of facial nerve outcomes after surgery for vestibular schwannoma using machine learning-based models: a systematic review and meta-analysis. Neurosurg Rev [Internet].;48(1). Available from: https://doi.org/10.1007/s10143-025-03230-9
Hajikarimloo B, Habibi MA, Alvani MS, Meinagh SO, Kooshki A, Afkhami-Ardakani O et al (2024) Machine learning-based models for prediction of survival in medulloblastoma: a systematic review and meta-analysis. Neurol Sci [Internet].;1–8. Available from: https://scholar.google.com/citations?view_op=view_citation%26;hl=en%26;user=3C983WEAAAAJ%26;sortby=pubdate%26;citation_for_view=3C983WEAAAAJ:aqlVkmm33-oC
Hajikarimloo B, Sabbagh Alvani M, Koohfar A, Goudarzi E, Dehghan M, Hojjat SH et al (2024) Clinical application of artificial intelligence in prediction of intraoperative cerebrospinal fluid leakage in pituitary surgery: A systematic review and meta-analysis. World Neurosurg [Internet].;191:303–13.e1. Available from: https://doi.org/10.1016/j.wneu.2024.09.015
Raissi Dehkordi N, Raissi Dehkordi N, Karimi Toudeshki K, Farjoo MH (2024) Artificial Intelligence in Diagnosis of Long QT Syndrome: A Review of Current State, Challenges, and Future Perspectives. Mayo Clinic Proceedings: Digital Health [Internet].; 2(1):21–31. Available from: https://www.sciencedirect.com/science/article/pii/S2949761223000937
Zhai Y, Bai J, Xue Y, Li M, Mao W, Zhang X et al (2022) Development and validation of a preoperative MRI-based radiomics nomogram to predict progression-free survival in patients with clival chordomas. Front Oncol [Internet].; 12:996262. Available from: https://doi.org/10.3389/fonc.2022.996262
Karhade AV, Thio Q, Ogink P, Kim J, Lozano-Calderon S, Raskin K et al (2018) Development of machine learning algorithms for prediction of 5-year spinal chordoma survival. World Neurosurg [Internet].; 119:e842–7. Available from: https://doi.org/10.1016/j.wneu.2018.07.276
Wei W, Wang K, Tian K, Liu Z, Wang L, Zhang J et al (2018) A novel MRI-based radiomics model for predicting recurrence in chordoma. Annu Int Conf IEEE Eng Med Biol Soc [Internet].; 2018:139–42. Available from: https://doi.org/10.1109/embc.2018.8512207
Zou MX, Pan Y, Huang W, Zhang TL, Escobar D, Wang XB et al (2020) A four-factor immune risk score signature predicts the clinical outcome of patients with spinal chordoma. Clin Transl Med [Internet].; 10(1):224–37. Available from: https://doi.org/10.1002/ctm2.4
Parrella G, Annunziata S, Morelli L, Molinelli S, Magro G, Ciocca M et al (2024) A dosiomics approach to treatment outcome modeling in carbon ion radiotherapy for skull base chordomas. Phys Med [Internet].; 124(103421):103421. Available from: https://doi.org/10.1016/j.ejmp.2024.103421
Morelli L, Parrella G, Molinelli S, Magro G, Annunziata S, Mairani A et al (2022) A dosiomics analysis based on Linear Energy Transfer and biological dose maps to predict Local Recurrence in Sacral Chordomas after carbon-Ion Radiotherapy. Cancers (Basel) [Internet].; 15(1):33. Available from: https://doi.org/10.3390/cancers15010033
Li Z, Fan Y, Ma J, Wang K, Li D, Zhang J et al (2024) The novel developed and validated multiparametric MRI-based fusion radiomic and clinicoradiomic models predict the postoperative progression of primary skull base chordoma. Sci Rep [Internet].; 14(1):28752. Available from: https://doi.org/10.1038/s41598-024-80410-5
Karabacak M, Carr MT, Schupper AJ, Bhimani AD, Steinberger J, Margetis K (2024) An interpretable machine learning approach to predict survival outcomes in spinal and sacropelvic chordomas. Spine (Phila Pa 1976) [Internet].; Available from: https://doi.org/10.1097/BRS.0000000000005002
Ghaith AK, Akinduro OO, Alexander AY, Goyal A, Bon-Nieves A, de Macedo Filho L et al (2023) Immunohistochemical markers predicting long-term recurrence following clival and spinal chordoma resection: a multicenter study. Neurosurg Focus [Internet].; 54(6):E15. Available from: https://doi.org/10.3171/2023.3.focus22653
Cheng D, Liu D, Li X, Zhang Z, Mi Z, Tao W et al (2023) Deep-learning-based model for the prediction of cancer-specific survival in patients with spinal chordoma. World Neurosurg [Internet].; 178:e835–45. Available from: https://doi.org/10.1016/j.wneu.2023.08.032
Buizza G, Paganelli C, D’Ippolito E, Fontana G, Molinelli S, Preda L et al (2021) Radiomics and dosiomics for predicting local control after carbon-ion radiotherapy in skull-base chordoma. Cancers (Basel) [Internet].; 13(2):339. Available from: https://doi.org/10.3390/cancers13020339
Ghaith AK, Akinduro OO, Perez-Vega C, Bon Nieves A, Abode-Iyamah K, Patel N et al (2023) Association between immunohistochemical markers and tumor progression following resection of spinal chordomas: a multicenter study. J Neurosurg Spine [Internet].; 39(5):652–60. Available from: https://doi.org/10.3171/2023.6.spine23348
Ghaith AK, Nguyen R, El-Hajj VG, Montaser A, De Biase G, Ravindran K et al (2024) Proton versus photon adjuvant radiotherapy: a multicenter comparative evaluation of recurrence following spinal chordoma resection. Neurosurg Focus [Internet].; 56(5):E9. Available from: https://doi.org/10.3171/2024.2.focus23927
Cheng P, Xie X, Knoedler S, Mi B, Liu G (2023) Predicting overall survival in chordoma patients using machine learning models: a web-app application. J Orthop Surg Res [Internet].; 18(1):652. Available from: https://doi.org/10.1186/s13018-023-04105-9
Wei W, Wang K, Liu Z, Tian K, Wang L, Du J et al (2019) Radiomic signature: A novel magnetic resonance imaging-based prognostic biomarker in patients with skull base chordoma. Radiother Oncol [Internet]. 141:239–46. Available from: https://doi.org/10.1016/j.radonc.2019.10.002
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ [Internet].; 372:n71. Available from: https://doi.org/10.1136/bmj.n71
Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med [Internet].; 155(8):529–36. Available from: https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Luo D, Wan X, Liu J, Tong T (2018) Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res [Internet].; 27(6):1785–805. Available from: http://www.math.hkbu.edu.hk/~tongt/papers/SMMR2018.pdf
Desai RJ, Wang SV, Vaduganathan M, Evers T, Schneeweiss S (2020) Comparison of machine learning methods with traditional models for use of administrative claims with electronic medical records to predict heart failure outcomes. JAMA Netw Open [Internet].; 3(1):e1918962. Available from: https://doi.org/10.1001/jamanetworkopen.2019.18962
Shipe ME, Deppen SA, Farjah F, Grogan EL (2019) Developing prediction models for clinical use using logistic regression: an overview. J Thorac Dis [Internet].; 11(Suppl 4):S574–84. Available from: https://doi.org/10.21037/jtd.2019.01.25
Boateng EY, Abaye DA (2019) A review of the logistic regression model with emphasis on medical research. J Data Anal Inf Process [Internet].; 07(04):190–207. Available from: https://doi.org/10.4236/jdaip.2019.74012
Sauerbrei W, Perperoglou A, Schmid M, Abrahamowicz M, Becher H, Binder H et al (2020) State of the art in selection of variables and functional forms in multivariable analysis-outstanding issues. Diagn Progn Res [Internet].; 4(1):3. Available from: https://doi.org/10.1186/s41512-020-00074-3
Stiglic G, Kocbek P, Fijacko N, Zitnik M, Verbert K, Cilar L (2020) Interpretability of machine learning-based prediction models in healthcare. Wiley Interdiscip Rev Data Min Knowl Discov [Internet].; 10(5):e1379. Available from: https://doi.org/10.1002/widm.1379
Linardatos P, Papastefanopoulos V, Kotsiantis S, Explainable AI (2020) A review of machine learning interpretability methods. Entropy (Basel) [Internet].; 23(1):18. Available from: https://doi.org/10.3390/e23010018
Meng T, Huang R, Hu P, Yin H, Lin S, Qiao S et al (2021) Novel nomograms as aids for predicting recurrence and survival in chordoma patients: A retrospective multicenter study in mainland China. Spine (Phila Pa 1976) [Internet].; 46(1):E37–47. Available from: https://doi.org/10.1097/BRS.0000000000003716
Kyriazos T, Poga M (2024) Application of machine learning models in social sciences: Managing nonlinear relationships. Encyclopedia (Basel, 2021) [Internet].; 4(4):1790–805. Available from: https://doi.org/10.3390/encyclopedia4040118
Luo G (2016) A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw Model Anal Health Inform Bioinform [Internet].; 5(1). Available from: https://doi.org/10.1007/s13721-016-0125-6
Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K et al (2024) Interpreting black-box models: A review on explainable Artificial Intelligence. Cognit Comput [Internet].; 16(1):45–74. Available from: https://doi.org/10.1007/s12559-023-10179-8
Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell [Internet].; 1(5):206–15. Available from: https://doi.org/10.1038/s42256-019-0048-x
Antoniadi AM, Du Y, Guendouz Y, Wei L, Mazo C, Becker BA et al (2021) Current challenges and future opportunities for XAI in machine Learning-based Clinical Decision Support Systems: A systematic review. Appl Sci (Basel) [Internet].; 11(11):5088. Available from: https://doi.org/10.3390/app11115088
He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K (2019) The practical implementation of artificial intelligence technologies in medicine. Nat Med [Internet].; 25(1):30–6. Available from: https://doi.org/10.1038/s41591-018-0307-0
Comments (0)