Variability in the Content of 8-Hydroxy-2-deoxyguanosine as a Marker of Oxidative Stress during Subchronic Intoxication with Pesticides

Fouad, M.R. and Abdel-Raheem, S.A.A., An overview on the fate and behavior of imidacloprid in agricultural environments, Environ. Sci. Pollut. Res., 2024, vol. 31, pp. 61345–61355. https://doi.org/10.1007/s11356-024-35178-6

Article  CAS  Google Scholar 

Aktar, M.W, Sengupta, D., and Chowdhury, A., Impact of pesticides use in agriculture: Their benefits and hazards, Interdiscip. Toxicol., 2009, vol. 2, no. 1, pp. 1–12. https://doi.org/10.2478/v10102-009-0001-7

Article  PubMed  PubMed Central  Google Scholar 

Lopez-Galvez, N., Wagoner, R., Canales, R.A., de Zapien, J., Calafat, A.M., Ospina, M., Rosales, C., and Beamer, P., Evaluating imidacloprid exposure among grape field male workers using biological and environmental assessment tools: An exploratory study, Int. J. Hyg. Environ. Health, 2020, vol. 230, p. 113625. https://doi.org/10.1016/j.ijheh.2020.113625

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapoor, U., Srivastava, M.K., Trivedi, P., Garg, V., and Srivastava, L.P., Disposition and acute toxicity of imidacloprid in female rats after single exposure, Food Chem. Toxicol., 2014, vol. 68, pp. 190–195. https://doi.org/10.1016/j.fct.2014.03.019

Article  CAS  PubMed  Google Scholar 

Schulz-Jander, D.A. and Casida, J.E., Imidacloprid insecticide metabolism: Human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction, Toxicol. Lett., 2002, vol. 132, no. 1, pp. 65–70. https://doi.org/10.1016/s0378-4274(02)00068-1

Article  CAS  PubMed  Google Scholar 

Khidkhan, K., Ikenaka, Y., Ichise, T., Nakayama. S.M.M., Mizukawa, H., Nomiyama, K., Iwata, H., Arizono, K., Takahashi, K., Kato, K., and Ishizuka, M., Interspecies differences in cytochrome P450-mediated metabolism of neonicotinoids among cats, dogs, rats, and humans, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2021, vol. 239, p. 108898. https://doi.org/10.1016/j.cbpc.2020.108898

Article  CAS  Google Scholar 

Vardavas, A.I., Ozcagli, E., Fragkiadaki, P., Stivaktakis, P.D., Tzatzarakis, M.N., Alegakis, A.K., Vasilaki, F., Kaloudis, K., Tsiaoussis, J., Kouretas, D., Tsitsimpikou, C., Carvalho, F., and Tsatsakis, A.M., The metabolism of imidacloprid by aldehyde oxidase contributes to its clastogenic effect in New Zealand rabbits, Mutat. Res., Genet. Toxicol. Environ. Mutagen., 2018, vols. 829–830, pp. 26–32. https://doi.org/10.1016/j.mrgentox.2018.03.002

Article  CAS  PubMed  Google Scholar 

Sheftel, V.O., Indirect Food Additives and Polymers: Migration and Toxicology, Boca Raton: CRC, 2000. https://doi.org/10.1201/9781482293821

Katić, A., Kašuba, V., Kopjar, N., Lovaković, B.T., Marjanović Čermak, A.M., Mendaš, G., Micek, V., Milić, M., Pavičić, I., Pizent, A., Žunec, S., and Želježić, D., Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats, Chem.-Biol. Interact., 2021, vol. 338, p. 109287. https://doi.org/10.1016/j.cbi.2020.109287

Article  CAS  PubMed  Google Scholar 

Korolev, V.A., Felker, E.V., Yachmeneva, L.A., Babkina, L.A., Azarova, Y.A., Churilin, M.I., and Milova, A.I., Dynamics of the content of reactive oxygen species and the state of the glutathione system in the oral cavity during subchronic intoxication with the fungicide thiram and its antioxidant correction, Biomed. Khim., 2024, vol. 70, no. 2, pp. 73–82. https://doi.org/10.18097/PBMC20247002073

Article  CAS  PubMed  Google Scholar 

Feng, S., Kong, Z., Wang, X., Peng, P., and Zeng, E.Y., Assessing the genotoxicity of imidacloprid and RH-5849 in human peripheral blood lymphocytes in vitro with comet assay and cytogenetic tests, Ecotoxicol. Environ. Saf., 2005, vol. 61, no. 2, pp. 239–246. https://doi.org/10.1016/j.ecoenv.2004.10.005

Article  CAS  PubMed  Google Scholar 

Rai, B. and Mercurio, S.D., Environmentally relevant exposures of male mice to carbendazim and thiram cause persistent genotoxicity in male mice, Environ. Sci. Pollut. Res., 2020, vol. 27, pp. 10629–10641. https://doi.org/10.1007/s11356-019-07088-5

Article  CAS  Google Scholar 

Jelic, M.D., Mandic, A.D., Maricic, S.M., and Srdjenovic, B.U., Oxidative stress and its role in cancer, J. Cancer Res. Ther., 2021, vol. 17, no. 1, pp. 22–28. https://doi.org/10.4103/jcrt.JCRT_862_16

Article  CAS  PubMed  Google Scholar 

Marmiy, N.V. and Esipov, D.S., Biological role of 8‑oxo-2'-deoxyguanosine, Moscow Univ. Biol. Sci. Bull., 2015, vol. 70, pp. 168–172. https://doi.org/10.3103/S0096392515040070

Article  Google Scholar 

Cooke, M.S., Evans, M.D., Dizdaroglu, M., and Lunec, J., Oxidative DNA damage: Mechanisms, mutation, and disease, FASEB J., 2003, vol. 17, no. 10, pp. 1195–1214. https://doi.org/10.1096/fj.02-0752rev

Article  CAS  PubMed  Google Scholar 

Chang, V.C., Andreotti, G., Ospina, M., Parks, C.G., Liu, D., Shearer, J.J., Rothman, N., Silverman, D.T., Sandler, D.P., Calafat, A.M., Beane Freeman, L.E., and Hofmann, J.N., Glyphosate exposure and urinary oxidative stress biomarkers in the agricultural health study, J. Natl. Cancer Inst., 2023, vol. 115, no. 4, pp. 394–404. https://doi.org/10.1093/jnci/djac242

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, K.M., Park, S.Y., Lee, K., Oh, S.S., and Ko, S.B., Pesticide metabolite and oxidative stress in male farmers exposed to pesticide, Ann. Occup. Environ. Med., 2017, vol. 29, p. 5. https://doi.org/10.1186/s40557-017-0162-3

Article  PubMed  PubMed Central  Google Scholar 

Sevim, Ç., Akpınar, E., Aksu, E.H., Ömür, A.D., Yıldırım, S., Kara, M., Bolat, İ., Tsatsakis, A., Mesnage, R., Golokhvast, K.S., Uzunçakmak, S.K., and Ersoylu, R.N., Reproductive effects of S. boulardii on sub-Chronic acetamiprid and imidacloprid toxicity in male rats, Toxics, 2023, vol. 11, no. 2, p. 170. https://doi.org/10.3390/toxics11020170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abou-Zeid, S.M., Aljuaydi, S.H., AbuBakr, H.O., Tahoun, E.A., Di Cerbo, A., Alagawany, M., Khalil, S.R., and Farag, M.R., Astaxanthin mitigates thiacloprid-induced liver injury and immunotoxicity in male rats, Mar. Drugs, 2021, vol. 19, no. 9, p. 525. https://doi.org/10.3390/md19090525

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choromańska, M., Klimiuk, A., Kostecka-Sochoń, P., Wilczyńska, K., Kwiatkowski, M., Okuniewska, N., Waszkiewicz, N., Zalewska, A., and Maciejczyk, M., Antioxidant defence, oxidative stress and oxidative damage in saliva, plasma and erythrocytes of dementia patients. Can salivary AGE be a marker of dementia?, Int. J. Mol. Sci., 2017, vol. 18, no. 10, p. 2205. https://doi.org/10.3390/ijms18102205

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X., Anadón, A., Wu, Q., Qiao, F., Ares, I., Martínez-Larrañaga, M.R., Yuan, Z., and Martínez, M.A., Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism, Annu. Rev. Pharmacol. Toxicol., 2018, vol. 58, p. 471–507. https://doi.org/10.1146/annurev-pharmtox-010617-052429

Article  CAS  PubMed  Google Scholar 

Thyssen, J. and Machemer, L., Imidacloprid: Toxicology and metabolism, in Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor, Yamamoto, I. and Casida, J.E., Eds., Tokyo: Springer, 1999, pp. 213–222. https://doi.org/10.1007/978-4-431-67933-2_9

Shlapakova, T.I., Kostin, R.K., and Tyagunova, E.E., Reactive oxygen species: Participation in cellular processes and progression of pathology, Russ. J. Bioorg. Chem., 2020, vol. 46, no. 5, pp. 657–674. https://doi.org/10.1134/S1068162020050222

Article  CAS  Google Scholar 

Miao, Z., Wang, S., Wu, H., and Xu, S., Exposure to imidacloprid induce oxidative stress, mitochondrial dysfunction, inflammation, apoptosis and mitophagy via NF-kappaB/JNK pathway in grass carp hepatocytes, Fish Shellfish Immunol., 2022, vol. 120, pp. 674–685. https://doi.org/10.1016/j.fsi.2021.12.017

Article  CAS  PubMed  Google Scholar 

Vieira, C.E.D., Pérez, M.R., Acayaba, R.D., Raimundo, C.C.M., and Dos Reis Martinez, C.B., DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the neotropical fish Prochilodus lineatus, Chemosphere, 2018, vol. 195, pp. 125–134. https://doi.org/10.1016/j.chemosphere.2017.12.077

Article  CAS  PubMed  Google Scholar 

Bal, R., Naziroğlu, M., Türk, G., Yilmaz, Ö., Kuloğlu, T., Etem, E., and Baydas, G., Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats, Cell Biochem. Funct., 2012, vol. 30, no. 6, pp. 492–499. https://doi.org/10.1002/cbf.2826

Article  CAS  PubMed  Google Scholar 

Martins, S.G., Zilhão, R., Thorsteinsdóttir, S., and Carlos, A.R., Linking oxidative stress and DNA damage to changes in the expression of extracellular matrix components, Front. Genet., 2021, vol. 12, p. 673002. https://doi.org/10.3389/fgene.2021.673002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malhotra, N., Chen, K.H., Huang, J.C., Lai, H.T., Uapipatanakul, B., Roldan, M.J.M., Macabeo, A.P.G., Ger, T.R., and Hsiao, C.D., Physiologi

Comments (0)

No login
gif