Fouad, M.R. and Abdel-Raheem, S.A.A., An overview on the fate and behavior of imidacloprid in agricultural environments, Environ. Sci. Pollut. Res., 2024, vol. 31, pp. 61345–61355. https://doi.org/10.1007/s11356-024-35178-6
Aktar, M.W, Sengupta, D., and Chowdhury, A., Impact of pesticides use in agriculture: Their benefits and hazards, Interdiscip. Toxicol., 2009, vol. 2, no. 1, pp. 1–12. https://doi.org/10.2478/v10102-009-0001-7
Article PubMed PubMed Central Google Scholar
Lopez-Galvez, N., Wagoner, R., Canales, R.A., de Zapien, J., Calafat, A.M., Ospina, M., Rosales, C., and Beamer, P., Evaluating imidacloprid exposure among grape field male workers using biological and environmental assessment tools: An exploratory study, Int. J. Hyg. Environ. Health, 2020, vol. 230, p. 113625. https://doi.org/10.1016/j.ijheh.2020.113625
Article CAS PubMed PubMed Central Google Scholar
Kapoor, U., Srivastava, M.K., Trivedi, P., Garg, V., and Srivastava, L.P., Disposition and acute toxicity of imidacloprid in female rats after single exposure, Food Chem. Toxicol., 2014, vol. 68, pp. 190–195. https://doi.org/10.1016/j.fct.2014.03.019
Article CAS PubMed Google Scholar
Schulz-Jander, D.A. and Casida, J.E., Imidacloprid insecticide metabolism: Human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction, Toxicol. Lett., 2002, vol. 132, no. 1, pp. 65–70. https://doi.org/10.1016/s0378-4274(02)00068-1
Article CAS PubMed Google Scholar
Khidkhan, K., Ikenaka, Y., Ichise, T., Nakayama. S.M.M., Mizukawa, H., Nomiyama, K., Iwata, H., Arizono, K., Takahashi, K., Kato, K., and Ishizuka, M., Interspecies differences in cytochrome P450-mediated metabolism of neonicotinoids among cats, dogs, rats, and humans, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2021, vol. 239, p. 108898. https://doi.org/10.1016/j.cbpc.2020.108898
Vardavas, A.I., Ozcagli, E., Fragkiadaki, P., Stivaktakis, P.D., Tzatzarakis, M.N., Alegakis, A.K., Vasilaki, F., Kaloudis, K., Tsiaoussis, J., Kouretas, D., Tsitsimpikou, C., Carvalho, F., and Tsatsakis, A.M., The metabolism of imidacloprid by aldehyde oxidase contributes to its clastogenic effect in New Zealand rabbits, Mutat. Res., Genet. Toxicol. Environ. Mutagen., 2018, vols. 829–830, pp. 26–32. https://doi.org/10.1016/j.mrgentox.2018.03.002
Article CAS PubMed Google Scholar
Sheftel, V.O., Indirect Food Additives and Polymers: Migration and Toxicology, Boca Raton: CRC, 2000. https://doi.org/10.1201/9781482293821
Katić, A., Kašuba, V., Kopjar, N., Lovaković, B.T., Marjanović Čermak, A.M., Mendaš, G., Micek, V., Milić, M., Pavičić, I., Pizent, A., Žunec, S., and Želježić, D., Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats, Chem.-Biol. Interact., 2021, vol. 338, p. 109287. https://doi.org/10.1016/j.cbi.2020.109287
Article CAS PubMed Google Scholar
Korolev, V.A., Felker, E.V., Yachmeneva, L.A., Babkina, L.A., Azarova, Y.A., Churilin, M.I., and Milova, A.I., Dynamics of the content of reactive oxygen species and the state of the glutathione system in the oral cavity during subchronic intoxication with the fungicide thiram and its antioxidant correction, Biomed. Khim., 2024, vol. 70, no. 2, pp. 73–82. https://doi.org/10.18097/PBMC20247002073
Article CAS PubMed Google Scholar
Feng, S., Kong, Z., Wang, X., Peng, P., and Zeng, E.Y., Assessing the genotoxicity of imidacloprid and RH-5849 in human peripheral blood lymphocytes in vitro with comet assay and cytogenetic tests, Ecotoxicol. Environ. Saf., 2005, vol. 61, no. 2, pp. 239–246. https://doi.org/10.1016/j.ecoenv.2004.10.005
Article CAS PubMed Google Scholar
Rai, B. and Mercurio, S.D., Environmentally relevant exposures of male mice to carbendazim and thiram cause persistent genotoxicity in male mice, Environ. Sci. Pollut. Res., 2020, vol. 27, pp. 10629–10641. https://doi.org/10.1007/s11356-019-07088-5
Jelic, M.D., Mandic, A.D., Maricic, S.M., and Srdjenovic, B.U., Oxidative stress and its role in cancer, J. Cancer Res. Ther., 2021, vol. 17, no. 1, pp. 22–28. https://doi.org/10.4103/jcrt.JCRT_862_16
Article CAS PubMed Google Scholar
Marmiy, N.V. and Esipov, D.S., Biological role of 8‑oxo-2'-deoxyguanosine, Moscow Univ. Biol. Sci. Bull., 2015, vol. 70, pp. 168–172. https://doi.org/10.3103/S0096392515040070
Cooke, M.S., Evans, M.D., Dizdaroglu, M., and Lunec, J., Oxidative DNA damage: Mechanisms, mutation, and disease, FASEB J., 2003, vol. 17, no. 10, pp. 1195–1214. https://doi.org/10.1096/fj.02-0752rev
Article CAS PubMed Google Scholar
Chang, V.C., Andreotti, G., Ospina, M., Parks, C.G., Liu, D., Shearer, J.J., Rothman, N., Silverman, D.T., Sandler, D.P., Calafat, A.M., Beane Freeman, L.E., and Hofmann, J.N., Glyphosate exposure and urinary oxidative stress biomarkers in the agricultural health study, J. Natl. Cancer Inst., 2023, vol. 115, no. 4, pp. 394–404. https://doi.org/10.1093/jnci/djac242
Article CAS PubMed PubMed Central Google Scholar
Lee, K.M., Park, S.Y., Lee, K., Oh, S.S., and Ko, S.B., Pesticide metabolite and oxidative stress in male farmers exposed to pesticide, Ann. Occup. Environ. Med., 2017, vol. 29, p. 5. https://doi.org/10.1186/s40557-017-0162-3
Article PubMed PubMed Central Google Scholar
Sevim, Ç., Akpınar, E., Aksu, E.H., Ömür, A.D., Yıldırım, S., Kara, M., Bolat, İ., Tsatsakis, A., Mesnage, R., Golokhvast, K.S., Uzunçakmak, S.K., and Ersoylu, R.N., Reproductive effects of S. boulardii on sub-Chronic acetamiprid and imidacloprid toxicity in male rats, Toxics, 2023, vol. 11, no. 2, p. 170. https://doi.org/10.3390/toxics11020170
Article CAS PubMed PubMed Central Google Scholar
Abou-Zeid, S.M., Aljuaydi, S.H., AbuBakr, H.O., Tahoun, E.A., Di Cerbo, A., Alagawany, M., Khalil, S.R., and Farag, M.R., Astaxanthin mitigates thiacloprid-induced liver injury and immunotoxicity in male rats, Mar. Drugs, 2021, vol. 19, no. 9, p. 525. https://doi.org/10.3390/md19090525
Article CAS PubMed PubMed Central Google Scholar
Choromańska, M., Klimiuk, A., Kostecka-Sochoń, P., Wilczyńska, K., Kwiatkowski, M., Okuniewska, N., Waszkiewicz, N., Zalewska, A., and Maciejczyk, M., Antioxidant defence, oxidative stress and oxidative damage in saliva, plasma and erythrocytes of dementia patients. Can salivary AGE be a marker of dementia?, Int. J. Mol. Sci., 2017, vol. 18, no. 10, p. 2205. https://doi.org/10.3390/ijms18102205
Article CAS PubMed PubMed Central Google Scholar
Wang, X., Anadón, A., Wu, Q., Qiao, F., Ares, I., Martínez-Larrañaga, M.R., Yuan, Z., and Martínez, M.A., Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism, Annu. Rev. Pharmacol. Toxicol., 2018, vol. 58, p. 471–507. https://doi.org/10.1146/annurev-pharmtox-010617-052429
Article CAS PubMed Google Scholar
Thyssen, J. and Machemer, L., Imidacloprid: Toxicology and metabolism, in Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor, Yamamoto, I. and Casida, J.E., Eds., Tokyo: Springer, 1999, pp. 213–222. https://doi.org/10.1007/978-4-431-67933-2_9
Shlapakova, T.I., Kostin, R.K., and Tyagunova, E.E., Reactive oxygen species: Participation in cellular processes and progression of pathology, Russ. J. Bioorg. Chem., 2020, vol. 46, no. 5, pp. 657–674. https://doi.org/10.1134/S1068162020050222
Miao, Z., Wang, S., Wu, H., and Xu, S., Exposure to imidacloprid induce oxidative stress, mitochondrial dysfunction, inflammation, apoptosis and mitophagy via NF-kappaB/JNK pathway in grass carp hepatocytes, Fish Shellfish Immunol., 2022, vol. 120, pp. 674–685. https://doi.org/10.1016/j.fsi.2021.12.017
Article CAS PubMed Google Scholar
Vieira, C.E.D., Pérez, M.R., Acayaba, R.D., Raimundo, C.C.M., and Dos Reis Martinez, C.B., DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the neotropical fish Prochilodus lineatus, Chemosphere, 2018, vol. 195, pp. 125–134. https://doi.org/10.1016/j.chemosphere.2017.12.077
Article CAS PubMed Google Scholar
Bal, R., Naziroğlu, M., Türk, G., Yilmaz, Ö., Kuloğlu, T., Etem, E., and Baydas, G., Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats, Cell Biochem. Funct., 2012, vol. 30, no. 6, pp. 492–499. https://doi.org/10.1002/cbf.2826
Article CAS PubMed Google Scholar
Martins, S.G., Zilhão, R., Thorsteinsdóttir, S., and Carlos, A.R., Linking oxidative stress and DNA damage to changes in the expression of extracellular matrix components, Front. Genet., 2021, vol. 12, p. 673002. https://doi.org/10.3389/fgene.2021.673002
Article CAS PubMed PubMed Central Google Scholar
Malhotra, N., Chen, K.H., Huang, J.C., Lai, H.T., Uapipatanakul, B., Roldan, M.J.M., Macabeo, A.P.G., Ger, T.R., and Hsiao, C.D., Physiologi
Comments (0)