Tatevosyan, A.S., Etiologicheskie i patogeneticheskie osnovy nefrolitiaza (Etiological and Pathogenetic Bases of Nephrolithiasis), Krasnodar: Sovetskaya Kuban’, 1997.
Tamborino, F., Cicchetti, R., Mascitti, M., et al., Pathophysiology and main molecular mechanisms of urinary stone formation and recurrence, Int. J. Mol. Sci., 2024, vol. 25, no. 5, p. 3075. https://doi.org/10.3390/ijms25053075
Article CAS PubMed PubMed Central Google Scholar
Ryall, R.L., The future of stone research: Rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny, Urol. Res., 2008, vol. 36, pp. 77–97. https://doi.org/10.1007/s00240-007-0131-3
Bushinsky, D.A., Nephrolithiasis: Site of the initial solid phase, J. Clin. Invest., 2003, vol. 111, no. 5, pp. 602–605. https://doi.org/10.1172/JCI18016
Article CAS PubMed PubMed Central Google Scholar
Stoller, M.L., Low, R.K., Shami, G.S., et al., High resolution radiography of cadaveric kidneys: Unraveling the mystery of Randall’s plaque formation, J. Urol., 1996, vol. 156, no. 4, pp. 1263–1266. https://doi.org/10.1016/s0022-5347(01)65565-4
Article CAS PubMed Google Scholar
Kolbach-Mandel, A.M., Mandel, N.S., Hoffmann, B.R., et al., Stone former urine proteome demonstrates a cationic shift in protein distribution compared to normal, Urolithiasis, 2017, vol. 45, no. 4, pp. 337–346. https://doi.org/10.1007/s00240-017-0969-y
Article CAS PubMed PubMed Central Google Scholar
Boyce, W.H. and Garvey, F.K., The amount and nature of the organic matrix in urinary calculi: A review, J. Urol., 1956, vol. 76, no. 3, pp. 213–227. https://doi.org/10.1016/S0022-5347(17)66686-2
Article CAS PubMed Google Scholar
Warpehoski, M.A., Buscemi, P.J., Osborn, D.C., et al., Distribution of organic matrix in calcium oxalate renal calculi, Calcif. Tissue Int., 1981, vol. 33, no. 3, pp. 211–222. https://doi.org/10.1007/BF02409440
Article CAS PubMed Google Scholar
Negri, A.L. and Spivacow, F.R., Kidney stone matrix proteins: role in stone formation, World J. Nephrol., 2023, vol. 12, no. 2, pp. 21–28. https://doi.org/10.5527/wjn.v12.i2.21
Article PubMed PubMed Central Google Scholar
Ryall, R.L., The scientific basis of calcium oxalate urolithiasis, World J. Nephrol., 1993, vol. 11, no. 1, pp. 59–65. https://doi.org/10.1007/BF00182173
Klinman, J.P., Dynamical activation of function in metalloenzymes, FEBS Lett., 2023, vol. 597, no. 1, pp. 79–91. https://doi.org/10.1002/1873-3468.14515
Article CAS PubMed Google Scholar
Paloian, N.J. and Giachelli, C.M., A current understanding of vascular calcification in CKD, Am. J. Physiol. Renal Physiol., 2014, vol. 307, pp. F891–F900. https://doi.org/10.1152/ajprenal.00163.2014
Article CAS PubMed PubMed Central Google Scholar
Wang, M.S., Hoegler, K.J., and Hecht, M.H., Unevolved de novo proteins have innate tendencies to bind transition metals, Life, 2019, vol. 9, no. 1, p. 8. https://doi.org/10.3390/life9010008
Article CAS PubMed PubMed Central Google Scholar
Silberstein, J.L., Jasper, D., Chan, K.-W., and Cochran, J.R., Structural insights reveal interplay between LAG-3 homodimerization, ligand binding, and function, Proc. Natl. Acad. Sci. U. S. A., 2024, vol. 121, no. 12, p. e2310866121. https://doi.org/10.1073/pnas.2310866121
Article CAS PubMed PubMed Central Google Scholar
Rez, P., What does the crystallography of stones tell us about their formation?, Urolithiasis, 2017, vol. 45, no. 1, pp. 11–18. https://doi.org/10.1007/s00240-016-0951-0
Article CAS PubMed Google Scholar
Tupikina, E.Yu. and Yastrebov, S.G., Molecular complexes of glycine with cations H+, Ca2+, and phosphine oxide H3PO, Tech. Phys. Lett., 2021, vol. 47, pp. 147–149. https://doi.org/10.1134/S1063785021020140
Allen, C.N.S, Arjona, S.P., Santerre, M., and Sawaya, B.E., Hallmarks of metabolic reprogramming and their role in viral pathogenesis, Viruses, 2022, vol. 14, no. 3, p. 602. https://doi.org/10.3390/v14030602
Article CAS PubMed PubMed Central Google Scholar
Lieu, E.L., Nguyen, T., Rhyne, S., and Kim, J., Amino acids in cancer, Exp. Mol. Med., 2020, vol. 52, no. 1, pp. 15–30. https://doi.org/10.1038/s12276-020-0375-3
Article CAS PubMed PubMed Central Google Scholar
Wesson, J.A., Ganne, V., Beshensky, A.M., and Kleinman, J.G., Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers, Urolithiasis, 2005, vol. 33, no. 3, pp. 206–212. https://doi.org/10.1007/s00240-004-0455-1
Wesson, J.A., Kolbach-Mandel, A.M., Hoffmann, B.R., et al., Selective protein enrichment in calcium oxalate stone matrix: A window to pathogenesis?, Nat. Lab. Med., 2019, vol. 47, no. 6, pp. 521–532. https://doi.org/10.1007/s00240-019-01131-3
Rimer, J.D., Kolbach-Mandel, A.M., Ward, M.D., and Wesson, J.A., The role of macromolecules in the formation of kidney stones, Urolithiasis, 2017, vol. 45, no. 1, pp. 57–74. https://doi.org/10.1007/s00240-016-0948-8
Article CAS PubMed Google Scholar
Hueckel, T., Hocky, G.M., Palacci, J., and Sacanna, S., Ionic solids from common colloids, Nature, 2020, vol. 580, pp. 487–490. https://doi.org/10.1038/s41586-020-2205-0
Article CAS PubMed Google Scholar
Bigelow, M.W., Wiessner, J.H., Kleinman, J.G., and Mandel, N.S., Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells, Am. J. Physiol., 1997, vol. 272, no. 1, pp. F55–F62. https://doi.org/10.1152/ajprenal.1997.272.1.F55
Article CAS PubMed Google Scholar
Vinaiphat, A. and Thongboonkerd, V., Characterizations of PMCA2-interacting complex and its role as a calcium oxalate crystal-binding protein, Cell. Mol. Life Sci., 2018, vol. 75, no. 8, pp. 1461–1482. https://doi.org/10.1007/s00018-017-2699-2
Article CAS PubMed Google Scholar
Solis, F.J., Phase diagram of dilute polyelectrolytes: Collapse and re-dissolution due to the association of counterions and co-ions, J. Chem. Phys., 2002, vol. 117, no. 19, pp. 9009–9015. https://doi.org/10.1063/1.1514575
Narula, S., Tandon, S., Singh, S.K., and Tandona, C., Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells, Life Sci., 2016, vol. 164, pp. 23–30. https://doi.org/10.1016/j.lfs.2016.08.026
Article CAS PubMed Google Scholar
Tanaka, Y., Maruyama, M., Okada, A., et al., Multicolor imaging of calcium-binding proteins in human kidney stones for elucidating the effects of proteins on crystal growth, Sci. Rep., 2021, vol. 11, p. 16841. https://doi.org/10.1038/s41598-021-95782-1
Article CAS PubMed PubMed Central Google Scholar
Aggarwal, K.P., Tandon, S., Naik, P.K., et al., Peeping into human renal calcium oxalate stone matrix: Characterization of novel proteins involved in the intricate mechanism of urolithiasis, PLoS One, 2013, vol. 8, no. 7, p. e69916. https://doi.org/10.1371/journal.pone.0069916
Article CAS PubMed PubMed Central Google Scholar
Shen, Yi., Chen, A., Wang, W., and Knowles, T.P.J., The liquid-to-solid transition of FUS is promoted by the condensate surface, Proc. Natl. Acad. Sci. U. S. A., 2023, vol. 120, no. 33, p. e2301366120. https://doi.org/10.1073/pnas.2301366120
Comments (0)