Thermodynamic and Electrochemical Characteristics of Urine Protein Molecules That Affect the Formation of Stones

Tatevosyan, A.S., Etiologicheskie i patogeneticheskie osnovy nefrolitiaza (Etiological and Pathogenetic Bases of Nephrolithiasis), Krasnodar: Sovetskaya Kuban’, 1997.

Tamborino, F., Cicchetti, R., Mascitti, M., et al., Pathophysiology and main molecular mechanisms of urinary stone formation and recurrence, Int. J. Mol. Sci., 2024, vol. 25, no. 5, p. 3075. https://doi.org/10.3390/ijms25053075

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryall, R.L., The future of stone research: Rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny, Urol. Res., 2008, vol. 36, pp. 77–97. https://doi.org/10.1007/s00240-007-0131-3

Article  PubMed  Google Scholar 

Bushinsky, D.A., Nephrolithiasis: Site of the initial solid phase, J. Clin. Invest., 2003, vol. 111, no. 5, pp. 602–605. https://doi.org/10.1172/JCI18016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stoller, M.L., Low, R.K., Shami, G.S., et al., High resolution radiography of cadaveric kidneys: Unraveling the mystery of Randall’s plaque formation, J. Urol., 1996, vol. 156, no. 4, pp. 1263–1266. https://doi.org/10.1016/s0022-5347(01)65565-4

Article  CAS  PubMed  Google Scholar 

Kolbach-Mandel, A.M., Mandel, N.S., Hoffmann, B.R., et al., Stone former urine proteome demonstrates a cationic shift in protein distribution compared to normal, Urolithiasis, 2017, vol. 45, no. 4, pp. 337–346. https://doi.org/10.1007/s00240-017-0969-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyce, W.H. and Garvey, F.K., The amount and nature of the organic matrix in urinary calculi: A review, J. Urol., 1956, vol. 76, no. 3, pp. 213–227. https://doi.org/10.1016/S0022-5347(17)66686-2

Article  CAS  PubMed  Google Scholar 

Warpehoski, M.A., Buscemi, P.J., Osborn, D.C., et al., Distribution of organic matrix in calcium oxalate renal calculi, Calcif. Tissue Int., 1981, vol. 33, no. 3, pp. 211–222. https://doi.org/10.1007/BF02409440

Article  CAS  PubMed  Google Scholar 

Negri, A.L. and Spivacow, F.R., Kidney stone matrix proteins: role in stone formation, World J. Nephrol., 2023, vol. 12, no. 2, pp. 21–28. https://doi.org/10.5527/wjn.v12.i2.21

Article  PubMed  PubMed Central  Google Scholar 

Ryall, R.L., The scientific basis of calcium oxalate urolithiasis, World J. Nephrol., 1993, vol. 11, no. 1, pp. 59–65. https://doi.org/10.1007/BF00182173

Article  CAS  Google Scholar 

Klinman, J.P., Dynamical activation of function in metalloenzymes, FEBS Lett., 2023, vol. 597, no. 1, pp. 79–91. https://doi.org/10.1002/1873-3468.14515

Article  CAS  PubMed  Google Scholar 

Paloian, N.J. and Giachelli, C.M., A current understanding of vascular calcification in CKD, Am. J. Physiol. Renal Physiol., 2014, vol. 307, pp. F891–F900. https://doi.org/10.1152/ajprenal.00163.2014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, M.S., Hoegler, K.J., and Hecht, M.H., Unevolved de novo proteins have innate tendencies to bind transition metals, Life, 2019, vol. 9, no. 1, p. 8. https://doi.org/10.3390/life9010008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silberstein, J.L., Jasper, D., Chan, K.-W., and Cochran, J.R., Structural insights reveal interplay between LAG-3 homodimerization, ligand binding, and function, Proc. Natl. Acad. Sci. U. S. A., 2024, vol. 121, no. 12, p. e2310866121. https://doi.org/10.1073/pnas.2310866121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rez, P., What does the crystallography of stones tell us about their formation?, Urolithiasis, 2017, vol. 45, no. 1, pp. 11–18. https://doi.org/10.1007/s00240-016-0951-0

Article  CAS  PubMed  Google Scholar 

Tupikina, E.Yu. and Yastrebov, S.G., Molecular complexes of glycine with cations H+, Ca2+, and phosphine oxide H3PO, Tech. Phys. Lett., 2021, vol. 47, pp. 147–149. https://doi.org/10.1134/S1063785021020140

Article  CAS  Google Scholar 

Allen, C.N.S, Arjona, S.P., Santerre, M., and Sawaya, B.E., Hallmarks of metabolic reprogramming and their role in viral pathogenesis, Viruses, 2022, vol. 14, no. 3, p. 602. https://doi.org/10.3390/v14030602

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lieu, E.L., Nguyen, T., Rhyne, S., and Kim, J., Amino acids in cancer, Exp. Mol. Med., 2020, vol. 52, no. 1, pp. 15–30. https://doi.org/10.1038/s12276-020-0375-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wesson, J.A., Ganne, V., Beshensky, A.M., and Kleinman, J.G., Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers, Urolithiasis, 2005, vol. 33, no. 3, pp. 206–212. https://doi.org/10.1007/s00240-004-0455-1

Article  CAS  Google Scholar 

Wesson, J.A., Kolbach-Mandel, A.M., Hoffmann, B.R., et al., Selective protein enrichment in calcium oxalate stone matrix: A window to pathogenesis?, Nat. Lab. Med., 2019, vol. 47, no. 6, pp. 521–532. https://doi.org/10.1007/s00240-019-01131-3

Article  CAS  Google Scholar 

Rimer, J.D., Kolbach-Mandel, A.M., Ward, M.D., and Wesson, J.A., The role of macromolecules in the formation of kidney stones, Urolithiasis, 2017, vol. 45, no. 1, pp. 57–74. https://doi.org/10.1007/s00240-016-0948-8

Article  CAS  PubMed  Google Scholar 

Hueckel, T., Hocky, G.M., Palacci, J., and Sacanna, S., Ionic solids from common colloids, Nature, 2020, vol. 580, pp. 487–490. https://doi.org/10.1038/s41586-020-2205-0

Article  CAS  PubMed  Google Scholar 

Bigelow, M.W., Wiessner, J.H., Kleinman, J.G., and Mandel, N.S., Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells, Am. J. Physiol., 1997, vol. 272, no. 1, pp. F55–F62. https://doi.org/10.1152/ajprenal.1997.272.1.F55

Article  CAS  PubMed  Google Scholar 

Vinaiphat, A. and Thongboonkerd, V., Characterizations of PMCA2-interacting complex and its role as a calcium oxalate crystal-binding protein, Cell. Mol. Life Sci., 2018, vol. 75, no. 8, pp. 1461–1482. https://doi.org/10.1007/s00018-017-2699-2

Article  CAS  PubMed  Google Scholar 

Solis, F.J., Phase diagram of dilute polyelectrolytes: Collapse and re-dissolution due to the association of counterions and co-ions, J. Chem. Phys., 2002, vol. 117, no. 19, pp. 9009–9015. https://doi.org/10.1063/1.1514575

Article  CAS  Google Scholar 

Narula, S., Tandon, S., Singh, S.K., and Tandona, C., Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells, Life Sci., 2016, vol. 164, pp. 23–30. https://doi.org/10.1016/j.lfs.2016.08.026

Article  CAS  PubMed  Google Scholar 

Tanaka, Y., Maruyama, M., Okada, A., et al., Multicolor imaging of calcium-binding proteins in human kidney stones for elucidating the effects of proteins on crystal growth, Sci. Rep., 2021, vol. 11, p. 16841. https://doi.org/10.1038/s41598-021-95782-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aggarwal, K.P., Tandon, S., Naik, P.K., et al., Peeping into human renal calcium oxalate stone matrix: Characterization of novel proteins involved in the intricate mechanism of urolithiasis, PLoS One, 2013, vol. 8, no. 7, p. e69916. https://doi.org/10.1371/journal.pone.0069916

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, Yi., Chen, A., Wang, W., and Knowles, T.P.J., The liquid-to-solid transition of FUS is promoted by the condensate surface, Proc. Natl. Acad. Sci. U. S. A., 2023, vol. 120, no. 33, p. e2301366120. https://doi.org/10.1073/pnas.2301366120

Article 

Comments (0)

No login
gif