Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs), FDA, 2020. https:// www.fda. gov/ regulatory-information/search-fda-guidance-documents/chemistry-manufacturing-and-control-cmc-information-human-gene-therapy-investigational-new-drug. Cited July 5, 2024.
Both, G.W., Xenogenic adenoviral vectors, in Adenoviral Vectors for Gene Therapy, 2002, pp. 447–479. https://doi.org/10.1016/B978-012199504-1/50017-1
Howe, J.A., Mymryk, J.S., Egan, C., Branton, P.E., and Bayley, S.T., Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis, Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, pp. 5883–5887. https://doi.org/10.1073/pnas.87.15.5883
Article CAS PubMed PubMed Central Google Scholar
Wang, H.G., Draetta, G., and Moran, E., E1A induces phosphorylation of the retinoblastoma protein independently of direct physical association between the E1A and retinoblastoma products, Mol. Cell. Biol., 1991, vol. 11, pp. 4253–4265. https://doi.org/10.1128/mcb.11.8.4253-4265.1991
Article CAS PubMed PubMed Central Google Scholar
Howe, J.A. and Bayley, S.T., Effects of Ad5 E1A mutant viruses on the cell cycle in relation to the binding of cellular proteins including the retinoblastoma protein and cyclin A, Virology, 1992, vol. 186, pp. 15–24. https://doi.org/10.1016/0042-6822(92)90057-v
Article CAS PubMed Google Scholar
Helin, K., Regulation of cell proliferation by the E2F transcription factors, Curr. Opin. Genet. Dev., 1998, vol. 8, pp. 28–35. https://doi.org/10.1016/s0959-437x(98)80058-0
Article CAS PubMed Google Scholar
Johnson, D.G. and Schneider-Broussard, R., Role of E2F in cell cycle control and cancer, Front. Biosci., 1998, vol. 27, pp. 447–448. https://doi.org/10.2741/a291
Ginsberg, H.S., Lundholm-Beauchamp, U., Horswood, R.L., Pernis, B., Wold, W.S., Chanock, R.M., and Prince, G.A., Role of early region 3 (E3) in pathogenesis of adenovirus disease, Proc. Natl. Acad. Sci. U. S. A., 1989, vol. 86, pp. 3823–3827. https://doi.org/10.1073/pnas.86.10.3823
Article CAS PubMed PubMed Central Google Scholar
Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R., Characteristics of a human cell line transformed by DNA from human adenovirus type 5, J. Gen. Virol., 1977, vol. 36, pp. 59–74. https://doi.org/10.1099/0022-1317-36-1-59
Article CAS PubMed Google Scholar
Louis, N., Evelegh, C., and Graham, F.L., Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line, Virology, 1997, vol. 233, pp. 423–429. https://doi.org/10.1006/viro.1997.8597
Article CAS PubMed Google Scholar
Tscherne, A., Schwarz, J.H., Rohde, C., Kupke, A., Kalodimou, G., Limpinsel, L., et al., Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA-SARS-2-S in preclinical vaccination, Proc. Natl. Acad. Sci. U. S. A., 2021, vol. 118, p. 2026207118. https://doi.org/10.1073/pnas.2026207118
Lochmüller, H., Jani, A., Huard, J., Prescott, S., Simoneau, M., Massie, B., Karpati, G., and Acsadi, G., Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells, Hum. Gene Ther., 1994, vol. 5, pp. 1485–1491. https://doi.org/10.1089/hum.1994.5.12-1485
Petrova, I.D., Zaitsev, B.N., and Taranov, O.S., Concentration of viruses and electron microscopy, Vavilov. Zh. Genet. Sel., 2020, vol. 24, pp. 276–283. https://doi.org/10.18699/VJ20.620
Tavakoli, A., Rezaei, F., Fatemi Nasab, G.S., Adjaminezhad-Fard, F., Noroozbabaei, Z., and Mokhtari-Azad, T., The comparison of sensitivity and specificity of ELISA-based microneutralization test with hemagglutination inhibition test to evaluate neutralizing antibody against influenza virus (H1N1), Iran. J. Public Health, 2017, vol. 46, pp. 1690–1696.
PubMed PubMed Central Google Scholar
Singanayagam, A., Patel, M., Charlett, A., Lopez Bernal, J., Saliba, V., Ellis, J., Ladhani, S., Zambon, M., and Gopal, R., Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, Euro Surveill., 2021, vol. 25, p. 2001483. https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001483
Cooper, P.D., The plaque assay of animal viruses, Adv. Virus Res., 1961, vol. 8, pp. 319–378. https://doi.org/10.1016/s0065-3527(08)60689-2
Article CAS PubMed Google Scholar
Shurtleff, A.C., Biggins, J.E., Keeney, A.E., Zumbrun, E.E., Bloomfield, H.A., Kuehne, A., Audet, J.L., Alfson, K.J., Griffiths, A., Olinger, G.G., and Bavari, S., Standardization of the filovirus plaque assay for use in preclinical studies, Viruses, 2012, vol. 4, pp. 3511–3530. https://doi.org/10.3390/v4123511
Article PubMed PubMed Central Google Scholar
Ramakrishnan, M.A., Determination of 50% endpoint titer using a simple formula, World J. Virol., 2016, vol. 5, pp. 85–86. https://doi.org/10.5501/wjv.v5.i2.85
Article PubMed PubMed Central Google Scholar
Baer, A. and Kehn-Hall, K., Viral concentration determination through plaque assays: Using traditional and novel overlay systems, J. Visualized Exp., 2014, vol. 4, p. 52065. https://doi.org/10.3791/52065
Comments (0)