Organotin Complexes—Candidates for Antitumor Agents: Toxicity vs. Pharmaceutical Activity

Dodokhova, M.A., Safronenko, A.V., Kotieva, I.M., Sukhorukova, N.V., Gantsgorn, E.V., Alkhusein-Kulyaginova, M.S., Komarova, E.F., Shpakovskii, D.B., and Milaeva, E.R., Estimation of pharmacotherapeutic potential of organotin compounds in vivo, Biofarm. Zh., 2021, vol. 13, pp. 30–34. https://doi.org/10.30906/2073-8099-2021-13-3-11-15

Article  CAS  Google Scholar 

Banti, C.N., Hadjikakou, S.K., Sismanoglu, T., and Hadjiliadis, N., Anti-proliferative and antitumor activity of organotin(IV) compounds. An overview of the last decade and future perspectives, J. Inorg. Biochem., 2019, vol. 194, pp. 114–152. https://doi.org/10.1016/j.jinorgbio.2019.02.003

Article  CAS  PubMed  Google Scholar 

Devi, J., Boora, A., Rani, M., and Arora, T., Recent advancements in organotin(IV) complexes as potent cytotoxic agents, Anticancer Agents Med. Chem., 2023, vol. 23, pp. 164–191. https://doi.org/10.2174/1871520622666220520095549

Article  CAS  PubMed  Google Scholar 

Dodokhova, M.A., Safronenko, A.V., Kotieva, I.M., Alkhuseyn-Kulyaginova, M.S., Shpakovsky, D.B., and Milaeva, E.R., Impact of organotin compounds on the growth of epidermoid Lewis carcinoma, Res. Results Pharmacol., 2021, vol. 7, pp. 81–88. https://doi.org/10.3897/rrpharmacology.7.71455

Article  CAS  Google Scholar 

Dodokhova, M.A., Safronenko, A.V., Kotieva, I.M., Alkhuseyn-Kulyaginova, M.S., Shpakovsky, D.B., and Milaeva, E.R., Evaluation of the pharmacological activity of hybrid organotin compounds in a B16 melanoma model in the classical and metronomic administration modes, Res. Results Pharmacol., 2022, vol. 8, pp. 85–93. https://doi.org/10.3897/rrpharmacology.8.76363

Article  CAS  Google Scholar 

Pagliarani, A., Nesci, S., and Ventrella, V., Toxicity of organotin compounds: Shared and unshared biochemical targets and mechanisms in animal cells, Toxicol. In Vitro, 2013, vol. 27, pp. 978–990. https://doi.org/10.1016/j.tiv.2012.12.002

Article  CAS  PubMed  Google Scholar 

Nehra, B., Mathew, B., and Chawla, P.A., A medicinal chemist’s perspective towards structure activity relationship of heterocycle based anticancer agents, Curr. Top. Med. Chem., 2022, vol. 22, pp. 493–528. https://doi.org/10.2174/1568026622666220111142617

Article  CAS  PubMed  Google Scholar 

Semin, A.A., On the issue of increasing the productivity of scientific research in the field of developing innovative drugs, Remedium, 2018, no. 3, pp. 6–15. https://doi.org/10.21518/1561-5936-2018-3-6-15

Melezhnikova, N.O., Domnina, A.P., Goryachaya, T.S., and Petrosyan, M.A., Cellular technologies in pharmacological studies. Present and future, Tsitologiya, 2018, vol. 60, pp. 673–678. https://doi.org/10.7868/s0041377118090023

Article  Google Scholar 

OECD, Test No. 420: Acute Oral Toxicity—Fixed Dose Procedure. OECD Guidelines for the Testing of Chemicals, Section 4, Paris: OECD Publishing, 2001. https://doi.org/10.1787/9789264070943-en

OECD, Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure. OECD Guidelines for the Testing of Chemicals, Section 4, Paris: OECD Publishing, 2008. https://doi.org/10.1787/9789264071049-en

Avdeeva, O.I., Makarova, M.N., Kalatanova, A.V., and Kovaleva, M.A., Bioethical and economic aspects in the basis of the choice of the method for studying the toxicity of drugs with a single administration, Lab. Zhivotn. Nauchn. Issled., 2018, pp. 4–11.

Google Scholar 

Dodokhova, M.A., Voronova, O.V., Alkhusein-Kulyaginova, M.S., Gulyan, M.V., Kotieva, E.M., Korobka, S.Yu., Kotieva, V.M., Karapetyan, K.K., Vlasova, N.D., Shpakovskii, D.B., Milaeva, E.R., and Kotieva, I.M., Optimization of algorithms for in vivo preclinical screening of organoelement compounds with putative antitumor activity, Ross. Onkol. Zh., 2023, vol. 28, pp. 119–135. https://doi.org/10.17816/onco501804

Article  Google Scholar 

Ronconi, K.S., Stefanon, I., and Ribeiro R.F., Jr., Tributyltin and vascular dysfunction: The role of oxidative stress, Front. Endocrinol. (Lausanne), 2018, vol. 9, p. 354. https://doi.org/10.3389/fendo.2018.00354

Article  Google Scholar 

O’Shaughnessy, D.J. and Losos, G.J., Peripheral and central nervous system lesions caused by triethyl- and trimethyltin salts in rats, Toxicol. Pathol., 1986, vol. 14, pp. 141–148. https://doi.org/10.1177/019262338601400201

Article  PubMed  Google Scholar 

Ekuta, J.E., Hikal, A.H., and Matthews, J.C., Toxicokinetics of trimethyltin in four inbred strains of mice, Toxicol. Lett., 1998, vol. 95, pp. 41–46. https://doi.org/10.1016/s0378-4274(98)00019-8

Article  CAS  PubMed  Google Scholar 

Opacka, J. and Sparrow, S., Nephrotoxic effect of trimethyltin in rats, Toxicol. Lett., 1985, vol. 27, pp. 97–102. https://doi.org/10.1016/0378-4274(85)90125-0

Article  CAS  PubMed  Google Scholar 

Attahiru, U.S., Iyaniwura, T.T., Adaudi, A.O., and Bonire, J.J., Subchronic toxicity studies of tri-n-butyltin and triphenyltin acetates in rats, Vet. Hum. Toxicol., 1991, vol. 33, pp. 499–502.

CAS  PubMed  Google Scholar 

Watanabe, K., Yanase, K., and Ohhira, S., Comparative study of five trialkyltin compounds: Their metabolites in rat organs 24 hours after single oral treatment, Nihon Eiseigaku Zasshi, 2007, vol. 62, pp. 58–63. https://doi.org/10.1265/jjh.62.58

Article  CAS  PubMed  Google Scholar 

Dragić, M., Mitrović, N., Adžić, M., Nedeljković, N., and Grković, I., Microglial- and astrocyte-specific expression of purinergic signaling components and inflammatory mediators in the rat hippocampus during trimethyltin-induced neurodegeneration, ASN Neuro, 2021, vol. 13, pp. 1–18. https://doi.org/10.1177/17590914211044882

Article  CAS  Google Scholar 

Cai, H., Chen, M., Gao, Y., Ruan, J., He, C., and Zuo, Z., Transgenerational effects and mechanisms of tributyltin exposure on neurodevelopment in the male offspring of rats, Environ. Sci. Technol., 2023, vol. 57, pp. 10201–10210. https://doi.org/10.1021/acs.est.3c01546

Article  CAS  PubMed  Google Scholar 

Sarmento, I.V., Merlo, E., Meyrelles, S.S., Vasquez, E.C., Warner, G.R., Gonsioroski, A., De La Torre, K., Meling, D.D., Flaws, J.A., and Graceli, J.B., Subchronic and low dose of tributyltin exposure leads to reduced ovarian reserve, reduced uterine gland number, and other reproductive irregularities in female mice, Toxicol. Sci., 2020, vol. 176, pp. 74–85. https://doi.org/10.1093/toxsci/kfaa045

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Araújo, J.F.P., Podratz, P.L., Merlo, E., Sarmen-to, I.V., da Costa, C.S., Niño, O.M.S., Faria, R.A., Freitas Lima, L.C., and Graceli, J.B., Organotin exposure and vertebrate reproduction: A review, Front. Endocrinol. (Lausanne), 2018, vol. 9, p. 64. https://doi.org/10.3389/fendo.2018.00064

Article  Google Scholar 

Harry, G.J., McPherson, C.A., Wine, R.N., Atkinson, K., and Lefebvre d’Hellencourt, C., Trimethyltin-induced neurogenesis in the murine hippocampus, Neurotoxic. Res., 2004, vol. 5, pp. 623–627. https://doi.org/10.1007/BF03033182

Article  Google Scholar 

Yu, Z.F. and Catalano, P.J., Quantitative risk assessment for multivariate continuous outcomes with application to neurotoxicology: The bivariate case, Biometrics, 2005, vol. 61, pp. 757–766. https://doi.org/10.1111/j.1541-0420.2005.00350.x

Article  PubMed  Google Scholar 

Imam, S.Z., He, Z., Cuevas, E., Rosas-Hernandez, H., Lantz, S.M., et al., Changes in the metabolome and microRNA levels in biological fluids might represent biomarkers of neurotoxicity: A trimethyltin study, Exp. Biol. Med. (Maywood), 2018, vol. 243, pp. 228–236. https://doi.org/10.1177/1535370217739859

Article  CAS  Google Scholar 

Pham, H.T.N., Phan, S.V., Tran, H.N., Phi, X.T., Le, X.T., et al., Bacopa monnieri (L.) ameliorates cognitive deficits caused in a trimethyltin-induced neurotoxicity model mice, Biol. Pharm. Bull., 2019, vol. 42, pp. 1384–1393. https://doi.org/10.1248/bpb.b19-00288

Article  CAS  PubMed  Google Scholar 

Ouyang, G.L., Wang, L.H., Xie, G.S., and Zhu, H.B., Follow up analysis of 6 patients with severe trimethyltin chloride poisoning for 4 years, Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2022, vol. 40, pp. 276–279. https://doi.org/10.3760/cma.j.cn121094-20210111-00012

Article  CAS  PubMed  Google Scholar 

Marques, V.B., Faria, R.A., and Dos Santos, L., Overview of the pathophysiological implications of organotins on the endocrine system, Front. Endocrinol. (Lausanne), 2018, vol. 9, p. 101. https://doi.org/10.3389/fendo.2018.00101

Article  Google Scholar 

Milaeva, E.R., Shpakovsky, D.B., Gracheva, Yu.A., et al., Some insight into the mode of cytotoxic action of organotin compounds with protective 2,6-di-tert-butylphenol fragments, J. Organomet. Chem., 2015, vol. 782, pp. 96–102. https://doi.org/10.1016/j.jorganchem.2014.12.013

Article  CAS  Google Scholar 

Ohhira, S., Watanabe, M., and Matsui, H., Identification of principal cytochrome P-450 in triphenyltin metabolism in rats, Toxicol. Lett., 2004, vol. 148, pp. 141–148. https://doi.org/10.1016/j.toxlet.2004.01.002

Article  CAS  PubMed  Google Scholar 

Sushak, L., Gabure, S., Maise, J., Arnett, J., and Whalen, M.M., Dibutyltin alters immune cell production of the pro-inflammatory cytokines interleukin (IL) 1β and IL-6: Role of mitogen-activated protein kinases and changes in mRNA, J. Appl. Toxicol., 2020, vol. 40, pp. 1047–1059. https://doi.org/10.1002/jat.3964

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif