Development of a Technology for Producing Therapeutic Peptides Weighting Less Than 5 kDa in a Bacterial Expression System

Lau, J.L. and Dunn, M.K., Therapeutic peptides: Historical perspectives, current development trends, and future directions, Bioorg. Med. Chem., 2018, vol. 26, pp. 2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052

Article  CAS  PubMed  Google Scholar 

Ilangala, A.B., Lechanteur, A., Fillet, M., and Piel, G., Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems, Eur. J. Pharm. Biopharm., 2021, vol. 167, pp. 140–158. https://doi.org/10.1016/j.ejpb.2021.07.010

Article  CAS  PubMed  Google Scholar 

Belgi, A., Hossain, M.A., Tregear, G.W., and Wade, J.D., The chemical synthesis of insulin: From the past to the present, Immunol., Endocr. Metab. Agents Med. Chem., 2011, vol. 11, pp. 40–47. https://doi.org/10.2174/187152211794519412

Article  CAS  Google Scholar 

Gokhale, A.S. and Satyanarayanajois, S., Peptides and peptidomimetics as immunomodulators, Immunotherapy, 2014, vol. 6, pp. 755–774. https://doi.org/10.2217/imt.14.37

Article  CAS  PubMed  Google Scholar 

Oyston, P.C.F., Fox, M.A., Richards, S.J., and Clark, G.C., Novel peptide therapeutics for treatment of infections, J. Med. Microbiol., 2009, vol. 58, pp. 977–987. https://doi.org/10.1099/jmm.0.011122-0

Article  CAS  PubMed  Google Scholar 

Fisher, E., Pavlenko, K., Vlasov, A., and Ramenskaya, G., Peptide-based therapeutics for oncology, Pharm. Med., 2019, vol. 33, pp. 9–20. https://doi.org/10.1007/s40290-018-0261-7

Article  CAS  Google Scholar 

Shah, J.N., Guo, G.Q., Krishnan, A., Ramesh, M., Katari, N.K., Shahbaaz, M., Abdellattif, M.H., Singh, S.K., and Dua, K., Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19, Therapie, 2022, vol. 77, pp. 319–328. https://doi.org/10.1016/j.therap.2021.09.007

Article  PubMed  Google Scholar 

Chandrudu, S., Simerska, P., and Toth, I., Chemical methods for peptide and protein production, Molecules, 2013, vol. 18, pp. 4373–4388. https://doi.org/10.3390/molecules18044373

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, J., Chen, L., Qin, S., Xie, M., Luo, S.Z., and Li, W., Advances in biosynthesis of peptide drugs: Technology and industrialization, Biotechnol. J., 2024, vol. 19, p. e2300256. https://doi.org/10.1002/biot.202300256

Article  CAS  PubMed  Google Scholar 

Li, Y., Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli, Biotechnol. Appl. Biochem., 2009, vol. 54, pp. 1–9. https://doi.org/10.1042/ba20090087

Article  CAS  PubMed  Google Scholar 

Hay, R.T., SUMO: A history of modification, Mol. Cell, 2005, vol. 18, pp. 1–12. https://doi.org/10.1016/j.molcel.2005.03.012

Article  CAS  PubMed  Google Scholar 

Peroutka, R.J. III, Orcutt, S.J., Strickler, J.E., and Butt, T.R., SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes, in Heterologous Gene Expression in E. coli, Methods in Molecular Biology, vol. 705, Totowa: Humana, 2011, pp. 15–30. https://doi.org/10.1007/978-1-61737-967-3_2

Müller, S., Hoege, C., Pyrowolakis, G., and Jentsch, S., SUMO, ubiquitin’s mysterious cousin, Nat. Rev. Mol. Cell Biol., 2001, vol. 2, pp. 202–210. https://doi.org/10.1038/35056591

Article  PubMed  Google Scholar 

Mossessova, E. and Lima, C.D., Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast, Mol. Cell, 2000, vol. 5, pp. 865–876. https://doi.org/10.1016/s1097-2765(00)80326-3

Article  CAS  PubMed  Google Scholar 

Toueille, M., Uzel, A., Depoisier, J.F., and Gantier, R., Designing new monoclonal antibody purification processes using mixed-mode chromatography sorbents, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2011, vol. 879, pp. 836–843. https://doi.org/10.1016/j.jchromb.2011.02.047

Article  CAS  Google Scholar 

Patra, A.K., Mukhopadhyay, R., Mukhija, R., Krishnan, A., Garg, L.C., and Panda, A.K., Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli, Protein Expression Purif., 2000, vol. 18, pp. 182–192. https://doi.org/10.1006/prep.1999.1179

Article  CAS  Google Scholar 

Latypov, V.F., Kornakov, I.A., Robustova, S.E., Khomutova, O.S., and Rodionov, P.P., RF Patent 2729353, 2019.

Casali, N.P., E. coli Plasmid Vectors: Methods and Applications, Cham: Springer, 2008.

Google Scholar 

Marty, M.T., Baldwin, A.J., Marklund, E.G., Hochberg, G.K.A., Benesch, J.L.P., and Robinson, C.V., Bayesian deconvolution of mass and ion mobility spectra: From binary interactions to polydisperse ensembles, Anal. Chem., 2015, vol. 87, pp. 4370–4376. https://doi.org/10.1021/acs.analchem.5b00140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolník, V., Capillary electrophoresis of proteins 2005–2007, Electrophoresis, 2008, vol. 29, pp. 143–156. https://doi.org/10.1002/elps.200700584

Article  CAS  PubMed  Google Scholar 

Schägger, H., Tricine-SDS-PAGE, Nat. Protoc., 2006, vol. 1, pp. 16–22. https://doi.org/10.1038/nprot.2006.4

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif