Characterization of time-dependent viscoelastic behaviors of alginate-calcium chloride hydrogels for bioprinting applications

Tomić SL, Babić Radić MM, Vuković JS, Filipović VV, Nikodinovic-Runic J, Vukomanović M. Alginate-Based hydrogels and scaffolds for biomedical applications. Mar Drugs. Multidisciplinary Digital Publishing Institute (MDPI); 2023.

Bt Ibrahim SF, Mohd Azam NAN, Amin KAM. Sodium alginate film: The effect of crosslinker on physical and mechanical properties. IOP Conf Ser Mater Sci Eng. Institute of Physics Publishing; 2019.

Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999.

Kaklamani G, Cheneler D, Grover LM, Adams MJ, Bowen J. Mechanical properties of alginate hydrogels manufactured using external gelation. J Mech Behav Biomed Mater. 2014;36:135–42.

Article  Google Scholar 

Aljohani W, Jumah Wenchao L, Ullah MW, Zhang X, Yang G. Application of Sodium Alginate Hydrogel. IOSR J Biotechnol Biochem. 2017;03:19–31.

Article  Google Scholar 

Grant GT, Mon ER, David REESSA. Jci Smiti-i P, Thom id. Biological interactions between polysacchartdes and divalent cations: the egg-box model.

Braccini I, Pérez S. Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules. 2001;2:1089–96.

Article  Google Scholar 

Wang Y, Zhao Y, He J, Sun C, Lu W, Zhang Y, et al. Doubling growth of egg-box structure during calcium-mediated molecular assembly of alginate. J Colloid Interface Sci. 2023;634:747–56.

Article  Google Scholar 

Abka-khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, Michaud P. Structures, properties and applications of alginates. Mar Drugs. 2022;20:364.

Article  Google Scholar 

Liu L, Zheng Y, Wang B, Qu N, Wang M, Zhong S, et al. Environmentally friendly and biodegradable sodium alginate-based biomembranes with low price and enhanced interfacial compatibility. ACS Sustain Chem Eng. 2024;12:14534–43.

Article  Google Scholar 

Gao X, Guo C, Hao J, Zhao Z, Long H, Li M. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int J Biol Macromol. 2020;164:4423–34.

Article  Google Scholar 

Abasalizadeh F, Moghaddam SV, Alizadeh E, Akbari E, Kashani E, Fazljou SMB et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng. 2020;14:1–22.

Google Scholar 

Xie M, Su J, Zhou S, Li J, Zhang K. Application of hydrogels as Three-Dimensional Bioprinting ink for tissue engineering. Gels. 2023;9:88.

Article  Google Scholar 

Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6:915–46.

Article  Google Scholar 

Lee KY, Mooney DJ, Alginate. Properties and biomedical applications. Progress in polymer science (Oxford). Elsevier Ltd; 2012. pp. 106–26.

Orr A, Wilson P, Stotesbury T. Calcium-Alginate tissue gels (CATG): Proof-of-concept biomaterial development. Forensic Sci Int. 2021;329:111055.

Article  Google Scholar 

Park S, Tao J, Sun L, Fan C-M, Chen Y. An economic, modular, and portable skin viscoelasticity measurement device for in situ longitudinal studies. Molecules. 2019;24:907.

Article  Google Scholar 

Park S, Chien AL, Brown ID, Chen J. Characterizing viscoelastic properties of human melanoma tissue using prony series. Front Bioeng Biotechnol. 2023;11.

Park S, Seawright A, Park S, Craig Dutton J, Grinnell F, Han B. Preservation of tissue microstructure and functionality during freezing by modulation of cytoskeletal structure. J Mech Behav Biomed Mater. 2015;45:32–44.

Article  Google Scholar 

Johnson KL, Kendall K, Roberts AD. Surface Energy and the Contact of Elastic Solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1971; 324(1558):301–313. https://doi.org/10.1098/rspa.1971.0141

McKee CT, Last JA, Russell P, Murphy CJ. Indentation Versus Tensile Measurements of Young’s Modulus for Soft Biological Tissues. Tissue Engineering Part B: Reviews, 2011; 17(3):155–164. https://doi.org/10.1089/ten.teb.2010.0520

Park S, Tao J, Sun L, Fan CM, Chen Y. An economic, modular, and portable skin viscoelasticity measurement device for in situ longitudinal studies. Molecules. 2019;24.

Tupin S, Molimard J, Cenizo V, Hoc T, Sohm B, Zahouani H. Multiscale approach to characterize mechanical properties of tissue engineered skin. Ann Biomed Eng. 2016;44:2851–62.

Article  Google Scholar 

Tan J, Luo Y, Guo Y, Zhou Y, Liao X, Li D et al. Development of alginate-based hydrogels: Crosslinking strategies and biomedical applications. Int J Biol Macromol. Elsevier B.V.; 2023.

Łabowska MB, Skrodzka M, Sicińska H, Michalak I, Detyna J. Influence of Cross-Linking conditions on drying kinetics of alginate hydrogel. Gels. 2023;9:63.

Google Scholar 

Li J, Wu Y, He J, Huang Y. A new insight to the effect of calcium concentration on gelation process and physical properties of alginate films. J Mater Sci. 2016;51:5791–801.

Article  Google Scholar 

Khromova YL. The effect of chlorides on alginate gelation in the presence of calcium sulfate. Colloid J. 2006;68:115–9.

Article  Google Scholar 

Hu C, Lu W, Mata A, Nishinari K, Fang Y. Ions-induced gelation of alginate: mechanisms and applications. Int J Biol Macromol. 2021;177:578–88.

Article  Google Scholar 

Lee D, Rahman MM, Zhou Y, Ryu S. Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir. 2015;31:9684–93.

Article  Google Scholar 

Ahearne M, Yang Y, Liu K-K. Mechanical characterisation of hydrogels for tissue engineering applications hydrogels for tissue engineering. Tissue Eng. 2008.

Webber RE, Shull KR. Strain dependence of the viscoelastic properties of alginate hydrogels. Macromolecules. 2004;37:6153–60.

Article  Google Scholar 

Somasekharan LT, Raju R, Kumar S, Geevarghese R, Nair RP, Kasoju N, et al. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose Bioink. Int J Biol Macromol. 2021;189:398–409.

Article  Google Scholar 

Cai K, Zhang J, Deng L, Yang L, Hu Y, Chen C, et al. Physical and biological properties of a novel hydrogel composite based on oxidized alginate, gelatin and tricalcium phosphate for bone tissue engineering. Adv Eng Mater. 2007;9:1082–8.

Article  Google Scholar 

Balakrishnan B, Joshi N, Jayakrishnan A, Banerjee R. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater. 2014;10:3650–63.

Article  Google Scholar 

Manju S, Muraleedharan CV, Rajeev A, Jayakrishnan A, Joseph R. Evaluation of alginate dialdehyde cross-linked gelatin hydrogel as a biodegradable sealant for polyester vascular graft. J Biomed Mater Res B Appl Biomater. 2011;98B:139–49.

Article  Google Scholar 

Baniasadi H, Mashayekhan S, Fadaoddini S, Haghirsharifzamini Y. Design, fabrication and characterization of oxidized alginate–gelatin hydrogels for muscle tissue engineering applications. J Biomater Appl. 2016;31:152–61.

Article  Google Scholar 

Chen F, Tian M, Zhang D, Wang J, Wang Q, Yu X, et al. Preparation and characterization of oxidized alginate covalently cross-linked galactosylated Chitosan scaffold for liver tissue engineering. Mater Sci Engineering: C. 2012;32:310–20.

Article  Google Scholar 

Coluccino L, Stagnaro P, Vassalli M, Scaglione S. Bioactive TGF-β1/HA Alginate-Based scaffolds for osteochondral tissue repair: design, realization and multilevel characterization. J Appl Biomater Funct Mater. 2016;14:42–52.

Google Scholar 

Sahoo DR, Biswal T. Alginate and its application to tissue engineering. SN Appl Sci. 2021;3:30.

Article  Google Scholar 

Northcutt LA, Questell AM, Rhoades J, Rafat M. Development of an alginate-Matrigel hydrogel system to evaluate cancer cell behavior in the stiffness range of the bone marrow. Front Biomaterials Sci. 2023;2:1140641.

Article  Google Scholar 

Cattelan G, Guerrero Gerbolés A, Foresti R, Pramstaller PP, Rossini A, Miragoli M et al. Alginate formulations: current developments in the race for Hydrogel-Based cardiac regeneration. Front Bioeng Biotechnol. 2020;8:414.

Google Scholar 

Ferrari S, Pesce M. Stiffness and aging in cardiovascular diseases: the dangerous relationship between force and senescence. Int J Mol Sci. 2021;22:3404.

Article  Google Scholar 

Ishihara S, Haga H. Matrix stiffness contributes to Cancer progression by regulating transcription factors. Cancers (Basel). 2022;14:1049.

Article  Google Scholar 

Abourehab MAS, Rajendran RR, Singh A, Pramanik S, Shrivastav P, Ansari MJ, et al. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the State-of-the-Art. Int J Mol Sci. 2022;23:9035.

Article  Google Scholar 

Hariyadi DM, Islam N. Current status of alginate in drug delivery. Adv Pharmacol Pharm Sci. 2020;2020:1–16.

Article  Google Scholar 

Adhikari J, Roy A, Das A, Ghosh M, Thomas S, Sinha A et al. Effects of processing parameters of 3D Bioprinting on the cellular activity of Bioinks. Macromol Biosci. 2021;21:2000179.

Article  Google Scholar 

Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, et al. Characterization of cell viability during Bioprinting processes. Biotechnol J. 2009;4:1168–77.

Article  Google Scholar 

Malekpour A, Chen X. Printability and cell viability in Extrusion-Based Bioprinting from experimental, computational, and machine learning views. J Funct Biomater. 2022;13:40.

Article  Google Scholar 

Xu H-Q, Liu J-C, Zhang Z-Y, Xu C-X. A review on cell damage, viability, and functionality during 3D Bioprinting. Mil Med Res. 2022;9:70.

Google Scholar 

Comments (0)

No login
gif