Antibacterial and anticancer activity of multifunctional iron-based magnetic nanoparticles against urinary tract infection and cystitis-related bacterial strains and bladder cancer cells

Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017;71:96–108. https://doi.org/10.1016/j.eururo.2016.06.010.

Article  Google Scholar 

Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62:220–41. https://doi.org/10.3322/caac.21149.

Article  Google Scholar 

Babjuk M, Burger M, Zigeuner R, Shariat SF, van Rhijn BWG, Compérat E, Sylvester RJ, Kaasinen E, Böhle A, Palou RJ, et al. EAU Guidelines on non–muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol. 2013;64:639–53. https://doi.org/10.1016/j.eururo.2013.06.003.

Article  Google Scholar 

Seiler R, Thalmann GN, Fleischmann A. MMP-2 and MMP-9 in lymph-node-positive bladder cancer. J Clin Pathol. 2011;64:1078–82. https://doi.org/10.1136/jclinpath-2011-200153.

Article  Google Scholar 

Hao L, Zhao Y, Li Z-G, He H-G, Liang Q, Zhang Z-G, Shi Z-D, Zhang P-Y, Han C-H. Tumor necrosis factor-related apoptosis-inducing ligand inhibits proliferation and induces apoptosis of prostate and bladder cancer cells. Oncol Lett. 2017;13:3638–40. https://doi.org/10.3892/ol.2017.5922.

Article  Google Scholar 

Seigel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

Article  Google Scholar 

Zhang M, Zheng K, Choudhury M, Phillips J, Konno S. Enhanced anticancer effect by combination of proteoglucan and Vitamin K 3 on bladder cancer cells. Cancer Transl Med. 2018;4:117. https://doi.org/10.4103/ctm.ctm_25_18.

Article  Google Scholar 

Chandrasekar T, Evans CP. Autophagy and urothelial carcinoma of the bladder: a review. Investig Clin Urol. 2016;57:S89. https://doi.org/10.4111/icu.2016.57.S1.S89.

Article  Google Scholar 

Knollman H, Godwin JL, Jain R, Wong YN, Plimack ER, Geynisman DM. Muscle-invasive urothelial bladder cancer: an update on systemic therapy. Ther Adv Urol. 2015;7:312–30. https://doi.org/10.1177/1756287215607418.

Article  Google Scholar 

Mani J, Vallo S, Rakel S, Antonietti P, Gessler F, Blaheta R, Bartsch G, Michaelis M, Cinatl J, Haferkamp A, et al. Chemoresistance is associated with increased cytoprotective autophagy and diminished apoptosis in bladder cancer cells treated with the BH3 mimetic (−)-Gossypol (AT-101). BMC Cancer. 2015;15:224. https://doi.org/10.1186/s12885-015-1239-4.

Article  Google Scholar 

Ojha R, Singh SK, Bhattacharyya S, Dhanda RS, Rakha A, Mandal AK, Jha V. Inhibition of grade dependent autophagy in urothelial carcinoma increases cell death under nutritional limiting condition and potentiates the cytotoxicity of chemotherapeutic agent. J Urol. 2014;191:1889–98. https://doi.org/10.1016/j.juro.2014.01.006.

Article  Google Scholar 

Li J-R, Cheng C-L, Yang W-J, Yang C-R, Ou Y-C, Wu M-J, Ko J-L. FIP-gts potentiate autophagic cell death against cisplatin-resistant urothelial cancer cells. Anticancer Res. 2014;34:2973–83.

Google Scholar 

Li J, Cheng C-L, Yang C-R, Ou Y-C, Wu M-J, Ko J-L. Dual inhibitor of phosphoinositide 3-kinase/mammalian target of rapamycin NVP-BEZ235 effectively inhibits cisplatin-resistant urothelial cancer cell growth through autophagic flux. Toxicol Lett. 2013;220:267–76. https://doi.org/10.1016/j.toxlet.2013.04.021.

Article  Google Scholar 

Mathieu R, Lucca I, Klatte T, Babjuk M, Shariat SF. Trimodal therapy for invasive bladder cancer: is it really equal to radical cystectomy? Curr Opin Urol. 2015;25:476–82. https://doi.org/10.1097/mou.0000000000000203.

Article  Google Scholar 

Shrivastava S, Mansure JJ, Almajed W, Cury F, Ferbeyre G, Popovic M, Seuntjens J, Kassouf W. The role of HMGB1 in radioresistance of bladder cancer. Mol Cancer Ther. 2016;15:471–9. https://doi.org/10.1158/1535-7163.mct-15-0581.

Article  Google Scholar 

Davis R, Jones JS, Barocas DA, Castle EP, Lang EK, Leveillee RJ, Messing EM, Miller SD, Peterson AC, Turk TMT, et al. Diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in adults: AUA guideline. J Urol. 2012;188:2473–81. https://doi.org/10.1016/j.juro.2012.09.078.

Article  Google Scholar 

Pashos CL, Botteman MF, Laskin BL, Redaelli A. Bladder cancer epidemiology, diagnosis, and management. Cancer Pract. 2002;10:311–22. https://doi.org/10.1046/j.1523-5394.2002.106011.x.

Article  Google Scholar 

Mohr DN, Offord KP, Owen RA, Melton LJ. Asymptomatic microhematuria and urologic disease. A Population-Based Study JAMA. 1986;256:224–9.

Google Scholar 

Golin AL, Howard RS. Asymptomatic microscopic hematuria. J Urol. 1980;124:389–91. https://doi.org/10.1016/S0022-5347(17)55461-0.

Article  Google Scholar 

American Cancer Society. Cancer facts and figures 2016.. Accessed May 20, 2016.

Shinagare AB, Ramaiya NH, Jagannathan JP, Fennessy FM, Taplin M-E, Van den Abbeele AD. Metastatic pattern of bladder cancer: correlation with the characteristics of the primary tumor. Am J Roentgenol. 2011;196:117–22. https://doi.org/10.2214/ajr.10.5036.

Article  Google Scholar 

Clark PE, Agarwal N, Biagioli MC, et al. National comprehensive cancer network bladder cancer. J Natl Compr Canc Netw. 2013;11(4):446–75. https://doi.org/10.6004/jnccn.2013.0059.

Article  Google Scholar 

Kausch I, Sommerauer M, Montorsi F, Stenzl A, Jacqmin D, Jichlinski P, Jocham D, Ziegler A, Vonthein R. Photodynamic diagnosis in non–muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol. 2010;57:595–606. https://doi.org/10.1016/j.eururo.2009.11.041.

Article  Google Scholar 

Mowatt G, N’Dow J, Vale L, Nabi G, Boachie C, Cook JA, Fraser C, Griffiths TRL. Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: systematic review and meta-analysis. Int J Technol Assess Health Care. 2011;27:3–10. https://doi.org/10.1017/s0266462310001364.

Article  Google Scholar 

Draga ROP, Grimbergen MCM, Kok ET, Jonges TN, van Swol CFP, Bosch JLHR. Photodynamic diagnosis (5-Aminolevulinic Acid) of transitional cell carcinoma after bacillus calmette-guérin immunotherapy and mitomycin C intravesical therapy. Eur Urol. 2010;57:655–60. https://doi.org/10.1016/j.eururo.2009.09.037.

Article  Google Scholar 

Ray ER, Chatterton K, Khan MS, Chandra A, Thomas K, Dasgupta P, O’Brien TS. Hexylaminolaevulinate fluorescence cystoscopy in patients previously treated with intravesical bacille Calmette-Guérin. BJU Int. 2010;105:789–94. https://doi.org/10.1111/j.1464-410x.2009.08839.x.

Article  Google Scholar 

Schumacher MC, Holmäng S, Davidsson T, Friedrich B, Pedersen J, Wiklund NP. Transurethral resection of non–muscle-invasive bladder transitional cell cancers with or without 5-aminolevulinic acid under visible and fluorescent light: results of a prospective, randomised. Multicentre Study Eur Urol. 2010;57:293–9. https://doi.org/10.1016/j.eururo.2009.10.030.

Article  Google Scholar 

Stenzl A, Penkoff H, Dajc-Sommerer E, Zumbraegel A, Hoeltl L, Scholz M, Riedl C, Bugelnig J, Hobisch A, Burger M, et al. Detection and clinical outcome of urinary bladder cancer with 5-aminolevulinic acid-induced fluorescence cystoscopy: a multicenter randomized, double-blind, placebo-controlled trial. Cancer. 2011;117:938–47. https://doi.org/10.1002/cncr.25523.

Article  Google Scholar 

Grossman HB, Stenzl A, Fradet Y, Mynderse LA, Kriegmair M, Witjes JA, Soloway MS, Karl A, Burger M. Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol. 2012;188:58–62. https://doi.org/10.1016/j.juro.2012.03.007.

Article  Google Scholar 

Jichlinski P, Forrer M, Mizeret J, Glanzmann T, Braichotte D, Wagnières G, Zimmer G, Guillou L, Schmidlin F, Graber P, et al. Clinical evaluation of a method for detecting superficial surgical transitional cell carcinoma of the bladder by light-induced fluorescence of protoporphyrin IX following the topical application of 5-aminolevulinic acid: preliminary results. Lasers Surg Med. 1997;20:402–8.

Article  Google Scholar 

Yan F, Zhang Y, Kim KS, Yuan HK, Vo-Dinh T. Cellular uptake and photodynamic activity of protein nanocages containing Methylene blue photosensitizing drug. Photochem Photobiol. 2010;86:662–6. https://doi.org/10.1111/j.1751-1097.2009.00696.x.

Article  Google Scholar 

Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53:R61-109. https://doi.org/10.1088/0031-9155/53/9/r01.

Article  Google Scholar 

Huang X, Tian XJ, Yang WL, Ehrenberg B, Chen JY. The conjugates of gold nanorods and chlorin E6 for enhancing the fluorescence detection and photodynamic therapy of cancers. Phys Chem Chem Phys. 2013;15:15727–33. https://doi.org/10.1039/C3CP44227F.

Article  Google Scholar 

Park BJ, Choi KH, Nam KC, Ali A, Min JE, Son H, Uhm HS, Kim HJ, Jung JS, Choi EU. Photodynamic anticancer activities of multifunctional cobalt ferrite nanoparticles in various cancer cells. J Biomed Nanotech. 2015;11:226–35. https://doi.org/10.1166/jbn.2015.2031.

Article  Google Scholar 

Choi KH, Nam KC, Kim UH, Cho G, Jung JS, Park BJ. Optimized photodynamic therapy with multifunctional cobalt magnetic nanoparticles. Nanomaterials. 2017;7:1–13. https://doi.org/10.3390/nano7060144.

Article  Google Scholar 

Bartlett G, Antoun J, Zgheib NK. Theranostics in primary care: pharmacogenomics tests and beyond. Expert Rev Mol Diagn. 2012;12:841–55. https://doi.org/10.1586/erm.12.115.

Article  Google Scholar 

Ryu JH, Koo H, Sun IC, Yuk SH, Choi K, Kim K, Kwon IC. Tumor-targeting multifunctional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev. 2012;64:1447–58. https://doi.org/10.1016/j.addr.2012.06.012.

Article  Google Scholar 

Puri A, Blumenthal R. Polymeric lipid assemblies as novel theranostic tools. Acc Chem Res. 2011;44:1071–9. https://doi.org/10.1021/ar2001843.

Article 

Comments (0)

No login
gif