Unobtrusive continuous hemodynamic monitoring method using processed heart sound signals in patients undergoing surgery: a proof of concept study

Klepper ID, Webb RK, Van der Walt JH, Ludbrook GL, Cockings J. The Australian Incident Monitoring Study. The stethoscope: applications and limitations–an analysis of 2000 incident reports. Anaesth Intensive Care. 1993;21(5):575–8.

Article  Google Scholar 

Durand LG, Pibarot P. Digital signal processing of the phonocardiogram: review of the most recent advancements. Crit Rev Biomed Eng. 1995;23(3–4):163–219.

Article  Google Scholar 

Singh J, Anand RS. Computer aided analysis of phonocardiogram. J Med Eng Technol. 2007;31(5):319–23.

Article  Google Scholar 

Wen YN, Lee AP, Fang F, Jin CN, Yu CM. Beyond auscultation: acoustic cardiography in clinical practice. Int J Cardiol. 2014;172(3):548–60.

Article  Google Scholar 

Leng S, Tan RS, Chai KT, Wang C, Ghista D, Zhong L. The electronic stethoscope. Biomed Eng Online. 2015;14:66.

Article  Google Scholar 

Rohr M, Müller B, Dill S, Güney G, Hoog Antink C. Multiple instance learning framework can facilitate explainability in murmur detection. PLOS Digit Health. 2024;3(3): e0000461.

Article  Google Scholar 

Chorba JS, Shapiro AM, Le L, Maidens J, Prince J, Pham S, Kanzawa MM, Barbosa DN, Currie C, Brooks C, et al. Deep learning algorithm for automated cardiac murmur detection via a digital stethoscope platform. J Am Heart Assoc. 2021;10(9): e019905.

Article  Google Scholar 

Zheng Y, Guo X, Qin J, Xiao S. Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics. Comput Methods Programs Biomed. 2015;122(3):372–83.

Article  Google Scholar 

Behbahani S. A hybrid algorithm for heart sounds segmentation based on phonocardiogram. J Med Eng Technol. 2019;43(6):363–77.

Article  Google Scholar 

Larsen BS, Winther S, Nissen L, Diederichsen A, Bottcher M, Jan Struijk J, Christensen MG, Schmidt SE. Spectral analysis of heart sounds associated with coronary artery disease. Physiol Meas. 2021;42(10):105013.

Article  Google Scholar 

Luo H, Westphal P, Shahmohammadi M, Heckman LIB, Kuiper M, Cornelussen RN, Delhaas T, Prinzen FW. Heart sound-derived systolic time intervals for atrioventricular delay optimization in cardiac resynchronization therapy. Heart Rhythm. 2023;20(4):572–9.

Article  Google Scholar 

Sakamoto T, Kusukawa R, Maccanon DM, Luisada AA. Hemodynamic determinants of the amplitude of the first heart sound. Circ Res. 1965;16:45–57.

Article  Google Scholar 

Jin HY. Systolic time intervals (STI). Korean J Crit Care Med. 1987;2(2):79–89.

Google Scholar 

Omari T, Bereksi-Reguig F. A new approach for blood pressure estimation based on phonocardiogram. Biomed Eng Lett. 2019;9(3):395–406.

Article  Google Scholar 

Moon YJ, Kim SH, Park YS, Kim JM, Hwang GS. Quantitative analysis of an intraoperative digitalized esophageal heart sound signal to speculate on perturbed cardiovascular function. J Clin Med. 2019;8(5):715.

Article  Google Scholar 

Park YS, Kim HS, Lee SA, Hwang GS, Jung W, Moon B, Kang KM, Seo WY, Song JG, Kim SH. Correlations between heart sound components and hemodynamic variables. Sci Rep. 2024;14(1):8602.

Article  Google Scholar 

Kim SH, Moon YJ, Kim JW, Song JG, Hwang GS. Prediction of fluid responsiveness by a non-invasive respiratory systolic time interval variation using heart sound signals in recipients undergoing liver transplantation. Transplant Proc. 2017;49(5):1082–6.

Article  Google Scholar 

Partovi E, Babic A, Gharehbaghi A. A review on deep learning methods for heart sound signal analysis. Front Artif Intell. 2024;7:1434022.

Article  Google Scholar 

Zhang A, Wang J, Qu F, He Z. Classification of children’s heart sounds with noise reduction based on variational modal decomposition. Front Med Technol. 2022;4: 854382.

Article  Google Scholar 

Thalmayer A, Zeising S, Fischer G, Kirchner J. A robust and real-time capable envelope-based algorithm for heart sound classification: validation under different physiological conditions. Sensors (Basel). 2020;20(4):972.

Article  Google Scholar 

Liu C, Springer D, Clifford GD. Performance of an open-source heart sound segmentation algorithm on eight independent databases. Physiol Meas. 2017;38(8):1730–45.

Article  Google Scholar 

Arjoune Y, Nguyen TN, Doroshow RW, Shekhar R. A noise-robust heart sound segmentation algorithm based on Shannon energy. IEEE Access. 2024;12:7747–61.

Article  Google Scholar 

Giordano N, Knaflitz M. A novel method for measuring the timing of heart sound components through digital phonocardiography. Sensors (Basel). 2019;19(8):1868.

Article  Google Scholar 

Silva A, Teixeira R, Fontes-Carvalho R, Coimbra M, Renna F. On the impact of synchronous electrocardiogram signals for heart sounds segmentation. Annu Int Conf IEEE Eng Med Biol Soc. 2023;2023:1–5.

Google Scholar 

Ermakov S, Hoyt JW. Pulmonary artery catheterization. Crit Care Clin. 1992;8(4):773–806.

Article  Google Scholar 

Ivanov RI, Allen J, Sandham JD, Calvin JE. Pulmonary artery catheterization: a narrative and systematic critique of randomized controlled trials and recommendations for the future. New Horiz. 1997;5(3):268–76.

Google Scholar 

American Society of Anesthesiologists Task Force on Pulmonary Artery C. Practice guidelines for pulmonary artery catheterization: an updated report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology. 2003;99(4):988–1014.

Article  Google Scholar 

Jacobzon E, Hasin T, Lifschitz A, Bogot N, Farkash A, Tager S, Silberman S. Is there a need for a pulmonary artery catheter in cardiac surgery today? Semin Cardiothorac Vasc Anesth. 2021;25(1):29–33.

Article  Google Scholar 

Thiele RH, Durieux ME. Arterial waveform analysis for the anesthesiologist: past, present, and future concepts. Anesth Analg. 2011;113(4):766–76.

Article  Google Scholar 

Esper SA, Pinsky MR. Arterial waveform analysis. Best Pract Res Clin Anaesthesiol. 2014;28(4):363–80.

Article  Google Scholar 

Sangkum L, Liu GL, Yu L, Yan H, Kaye AD, Liu H. Minimally invasive or noninvasive cardiac output measurement: an update. J Anesth. 2016;30(3):461–80.

Article  Google Scholar 

SignalTAB (Version 1.0.0) [https://bit.ly/4akLaMt]

Oktivasari P, Haryanto F, Hamidah Salman A, Riandini R, Suprijadi S. A real-time heart rate signal detection using an electronic stethoscope with labview. J Biomed Phys Eng. 2020;10(3):375–82.

Google Scholar 

Rao A, Huynh E, Royston TJ, Kornblith A, Roy S. Acoustic methods for pulmonary diagnosis. IEEE Rev Biomed Eng. 2019;12:221–39.

Article  Google Scholar 

Manecke GR Jr, Poppers PJ. Esophageal stethoscope placement depth: its effect on heart and lung sound monitoring during general anesthesia. Anesth Analg. 1998;86(6):1276–9.

Google Scholar 

Park YS, Moon YJ, Kim SH, Kim JM, Song JG, Hwang GS. Beat-to-beat tracking of pulse pressure and its respiratory variation using heart sound signal in patients undergoing liver transplantation. J Clin Med. 2019;8(5):593.

Article  Google Scholar 

Lehner RJ, Rangayyan RM. A three-channel microcomputer system for segmentation and characterization of the phonocardiogram. IEEE Trans Biomed Eng. 1987;34(6):485–9.

Article  Google Scholar 

Shahmohammadi M, Luo H, Westphal P, Cornelussen RN, Prinzen FW, Delhaas T. Hemodynamics-driven mathematical model of first and second heart sound generation. PLoS Comput Biol. 2021;17(9): e1009361.

Article  Google Scholar 

Huang J, Zhang W, Fu W, Le J, Qi Y, Hou X, Pan X, Li R, He B. Noninvasive evaluation of pulmonary hypertension using the second heart sound parameters collected by a mobile cardiac acoustic monitoring system. Front Cardiovasc Med. 2023;10:1292647.

Article  Google Scholar 

Reichert S, Gass R, Brandt C, Andres E. Analysis of respiratory sounds: state of the art. Clin Med Circ Respirat Pulm Med. 2008;2:45–58.

Google Scholar 

Casella G, Berger RL: Statistical Inference. 2nd edn: Duxbury; 2002.

Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):1763–8.

Article  Google Scholar 

Moon YJ, Bechtel AJ, Kim SH, Kim JW, Thiele RH, Blank RS. Detection of intratracheal accumulation of thick secretions by using continuous monitoring of respiratory acoustic spectrum: a preliminary analysis. J Clin Monit Comput. 2020;34(4):763–70.

Article  Google Scholar 

Meno F, Reddy PS, Bernardi L. Heart sound propagation in the human thorax. Clin Phys Physiol Meas. 1985;6(2):123–9.

Article  Google Scholar 

Hoon Lim K, Duck Shin Y, Hi Park S, Ho Bae J, Jae Lee H, Jung Kim S, Yun Shin J, Jin Choi Y. Correlation of blood pressure and the ratio of S1 to S2 as measured by esophageal stethoscope and wireless bluetooth transmission. Pak J Med Sci. 2013;29(4):1023–7.

Google Scholar 

Shin YD, Yim KH, Park SH, Jeon YW, Bae JH, Lee TS, Kim MH, Choi YJ. The correlation between the first heart sound and cardiac output as measured by using digital esophageal stethoscope under anaesthesia. Pak J Med Sci. 2014;30(2):276–81.

Google Scholar 

Garutti Martinez I, Olmedilla L, Perez-Pena JM, Zaballos M, Sanz J, Vigil MD, Navia J. Response to clamping of the inferior vena cava as a factor for predicting postreperfusion syndrome during liver transplantation. Anesth Analg. 1997;84(2):254–9.

Article  Google Scholar 

Margarit C, Lazaro JL, Hidalgo E, Balsells J, Murio E, Charco R, Revhaug A, Mora A, Cortes C. Cross-clamping of the three hepatic veins in the piggyback technique is a safe and well tolerated procedure. Transpl Int. 1998;11(Suppl 1):S248-250.

Comments (0)

No login
gif