Kawashita Y, Soutome S, Umeda M, Saito T (2020) Oral management strategies for radiotherapy of head and neck cancer. Japanese Dent Sci Rev 56:62–67
Rocha FS, Dias PC, Limirio PHJO, Lara VC, Batista JD, Dechichi P (2017) High doses of ionizing radiation on bone repair: is there effect outside the irradiated site? Injury 48:671–673
Korany NS, Mehanni SS, Hakam HM, El-Maghraby EMF (2012) Evaluation of socket healing in irradiated rats after diode laser exposure (histological and morphometric studies). Arch Oral Biol 57:884–891
Ghodpage P, Suroshe A (2023) Mandibular block graft for localised ridge augmentation followed by delayed implant placement: a case report. Cureus 15:1–8
Brannigan K, Griffin M (2016) An update into the application of nanotechnology in bone healing. Open Orthop J 10:808–823
Article CAS PubMed PubMed Central Google Scholar
Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J (2021) Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules 26:1–27
Tang Z, Li X, Tan Y, Fan H, Zhang X (2018) The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen Biomater 5:43–59
Article CAS PubMed Google Scholar
Zohery AA, Nour ZM, Abd El Rehim SS, Mady MI (2017) Histomorphometric analysis of bone regeneration after use of propolis versus nanobone graft materials for the management of class II furcation defects in dogs. Alexandria Dent J 42:198–203
Behnia H, Khojasteh A, Kiani MT, Khoshzaban A, Mashhadi Abbas F, Bashtar M et al (2013) Bone regeneration with a combination of nanocrystalline hydroxyapatite silica gel, platelet-rich growth factor, and mesenchymal stem cells: a histologic study in rabbit calvaria. Oral Surg Oral Med Oral Pathol Oral Radiol 115:e7–15
Gerike W, Bienengräber V, Henkel K-O, Bayerlein T, Proff P, Gedrange T et al (2006) The manufacture of synthetic non-sintered and degradable bone grafting substitutes. Folia Morphologica (Warsz) 65:54–55
Stelmakh A, Abrahamovych O, Cherkas A (2016) Highly purified calf hemodialysate (Actovegin®) May improve endothelial function by activation of proteasomes: a hypothesis explaining the possible mechanisms of action. Med Hypotheses 95:77–81
Article CAS PubMed Google Scholar
Ochi M, Wang PL, Ohura K, Takashima S, Kagami H, Hirose Y et al (2003) Solcoseryl, a tissue respiration stimulating agent, significantly enhances the effect of capacitively coupled electric field on the promotion of bone formation around dental implants. Clin Oral Implants Researchral Implants Res 14:294–302
Abdel-Hamid DM, El-Ghani SFA, Khashaba MM (2018) Characterization of nano-hydroxyapatite silica gel and evaluation of its combined effect with Solcoseryl paste on bone formation: an experimental study in new Zealand rabbits. Future Dent J 4:279–287
El-Sayyad A, El-Ghareeb T, Khashaba MM, Zayed MA (2020) Evaluation of the effect of Solcoseryl on promotion of bone regeneration in calvarial bony defect– an experimental pilot study. Adv Dent J 2:12–23
Nussenbaum B, Rutherford RB, Krebsbach PH (2005) Boneregeneration in cranial defects previously treated with radiation. Laryngoscope 115:1170–1177
Thabet NM, Rashed ER, Abdel-Rafei MK, Moustafa EM (2021) Modulation of the nitric oxide/BH4 pathway protects against irradiation-induced neuronal damage. Neurochem Res 46:1641–1658
Article CAS PubMed Google Scholar
Honma T, Itagaki T, Nakamura M, Kamakura S, Takahashi I, Echigo S et al (2008) Bone formation in rat calvaria ceases within a limited period regardless of completion of defect repair. Oral Dis 14:457–464
Article CAS PubMed Google Scholar
Akiyama Y, Ito M, Toriumi T, Hiratsuka T, Arai Y, Tanaka S et al (2021) Bone formation potential of collagen type I-based Recombinant peptide particles in rat calvaria defects. Regen Ther 16:12–22
Article CAS PubMed Google Scholar
Mahjoubi H, Buck E, Manimunda P, Farivar R, Chromik R, Murshed M et al (2017) Surface phosphonation enhances hydroxyapatite coating adhesion on polyetheretherketone and its osseointegration potential. Acta Biomater 47:149–158
Article CAS PubMed Google Scholar
Li C, Sun J, Shi K, Long J, Li L, Lai Y et al (2020) Preparation and evaluation of osteogenic nano-MgO/PMMA bone cement for bone healing in a rat critical size calvarial defect. J Mater Chem B 8:4575–4586
Article CAS PubMed Google Scholar
Liu G, Guo Y, Zhang L, Wang X, Liu R, Huang P et al (2019) A standardized rat burr hole defect model to study maxillofacial bone regeneration. Acta Biomater 86:450–464
Sugumaran S, Selvam D, Nivedhitha MS, Ganesh Mohanraj K, Almutairi BO, Arokiyaraj S et al (2023) Role of individual and combined impact of Simvastatin and α-TCP in rat calvarial bone defect: an experimental study. Saudi Dent J 35:861–868
Article PubMed PubMed Central Google Scholar
Abdel-Ghany H, Khashaba M, El Rouby D, El Anssary AEA, Ammar NM (2017) Comparative effectiveness of two different forms of phytoestrogens as a graft material in bony defects. J Oral Maxillofac Surg Med Pathol 29:405–410
Obeid RF, Abdelmoneim HS, Elsharkawy RT (2020) Histological evaluation of the antioxidant effect of vitamin E on reversing the negative impact of tartrazine on extraction Xocket healing. (Randomized controlled trial). Egypt Dent J 66:285–292
Malhan D, Muelke M, Rosch S, Schaefer AB, Merboth F, Weisweiler D et al (2018) An optimized approach to perform bone histomorphometry. Front Endocrinol (Lausanne) 9:1–11
Oliver W, Pharr G (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583
Al-Hezaimi K, Ramalingam S, Al-Askar M, ArRejaie AS, Nooh N, Jawad F et al (2016) Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo micro-computed tomographic and histologic experiment in rats. Int J Oral Sci 8:7–15
Article CAS PubMed Google Scholar
Gomes PS, Fernandes MH (2011) Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 45:14–24
Article CAS PubMed Google Scholar
Managuli V, Bothra YS, Kumar SS, Gaur P, Chandracharya PL (2023) Overview of mechanical characterization of bone using nanoindentation technique and its applications. Eng Sci 22:1–13
Aboushelib MN, Arnaout MA, Elsafi MH, Kassem YM (2017) Two-stage implant placement technique for the management of irradiated jaws: an animal study. J Prosthet Dent 118:546–550
Marx RE, Johnson RP (1987) Studies in the radiobiology of osteoradionecrosis and their clinical significance. Oral Surg Oral Med Oral Pathol 64:379–390
Article CAS PubMed Google Scholar
Bléry P, Espitalier F, Hays A, Crauste E, Demarquay C, Pilet P et al (2015) Development of mandibular osteoradionecrosis in rats: importance of dental extraction. J Cranio-Maxillofacial Surg 43:1829–1836
Curi MM, Cardoso CL, De Lima HG, Kowalski LP, Martins MD (2016) Histopathologic and histomorphometric analysis of irradiation injury in bone and the surrounding soft tissues of the jaws. J Oral Maxillofac Surg 74:190–199
Sório ALR, Vargas-Sanchez PK, Fernandes RR, Pitol DL, de Sousa LG, Bianchini ALB et al (2019) Cell therapy stimulates bone neoformation in calvaria defects in rats subjected to local irradiation. Anim Model Exp Med 2:169–177
Gerber T, Holzhüter G, Götz W, Bienengräber V, Henkel KO, Rumpel E (2006) Nanostructuring of biomaterials - a pathway to bone grafting substitute. Eur J Trauma 32:132–140
Abshagen K, Schrodi I, Gerber T, Vollmar B (2009) In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone®. J Biomed Mater Res A 91:557–566
Comments (0)