The state of AI in. Early 2024: gen AI adoption spikes and starts to generate value. McKinsey & Company 2024.
Dieleman JL, Cao J, Chapin A, Chen C, Li Z, Liu A, et al. JAMA. 2020;323(9):863–84. https://doi.org/10.1001/jama.2020.0734. US Health Care Spending by Payer and Health Condition, 1996–2016.
The National Health Expenditure Accounts. In: Services CfMM, editor.2023.
Shrank WH, Rogstad TL, Parekh N. Waste in the US health care system: estimated costs and potential for savings. JAMA. 2019;322(15):1501–9. https://doi.org/10.1001/jama.2019.13978.
Nundy S, Cooper LA, Mate KS. The quintuple aim for health care improvement: A new imperative to advance health equity. JAMA. 2022;327(6):521–2. https://doi.org/10.1001/jama.2021.25181.
Porter ME, Teisberg EO. Redefining health care: creating value-based competition on results. Harvard business; 2006.
Zhang M, Huang C, Druzhinin Z. A new optimization method for accurate anterior cruciate ligament tear diagnosis using convolutional neural network and modified golden search algorithm. Biomed Signal Process Control. 2024;89:105697.
Lex JR, Di Michele J, Koucheki R, Pincus D, Whyne C, Ravi B. Artificial intelligence for hip fracture detection and outcome prediction: A systematic review and Meta-analysis. JAMA Netw Open. 2023;6(3):e233391. https://doi.org/10.1001/jamanetworkopen.2023.3391.
Article PubMed PubMed Central Google Scholar
Hendrix N, Hendrix W, Maresch B, van Amersfoort J, Oosterveld-Bonsma T, Kolderman S, et al. Artificial intelligence for automated detection and measurements of carpal instability signs on conventional radiographs. Eur Radiol. 2024;34(10):6600–13.
PubMed PubMed Central Google Scholar
Zhou Z, Wang S, Zhang S, Pan X, Yang H, Zhuang Y, et al. Deep learning-based spinal Canal segmentation of computed tomography image for disease diagnosis: A proposed system for spinal stenosis diagnosis. Medicine. 2024;103(18):e37943.
PubMed PubMed Central Google Scholar
Pranata YD, Wang KC, Wang JC, Idram I, Lai JY, Liu JW, et al. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images. Comput Methods Programs Biomed. 2019;171:27–37. https://doi.org/10.1016/j.cmpb.2019.02.006.
Foreman SC, Schinz D, El Husseini M, Goller SS, Weißinger J, Dietrich AS, et al. Deep learning to differentiate benign and malignant vertebral fractures at multidetector CT. Radiology. 2024;310(3):e231429. https://doi.org/10.1148/radiol.231429.
Dankelman LHM, Schilstra S, FFA IJ, Doornberg JN, Colaris JW, Verhofstad MHJ, et al. Artificial intelligence fracture recognition on computed tomography: review of literature and recommendations. Eur J Trauma Emerg Surg. 2023;49(2):681–91. https://doi.org/10.1007/s00068-022-02128-1.
Yamamoto N, Rahman R, Yagi N, Hayashi K, Maruo A, Muratsu H et al. An automated fracture detection from pelvic CT images with 3-D convolutional neural networks. International Symposium on Community-centric Systems (CcS): IEEE; 2020. pp. 1–6.
Motohashi M, Funauchi Y, Adachi T, Fujioka T, Otaka N, Kamiko Y, et al. A new deep learning algorithm for detecting spinal metastases on computed tomography images. Spine. 2024;49(6):390–7.
Jaremko JL, Poncet P, Ronsky J, Harder J, Dansereau J, Labelle H, et al. Estimation of spinal deformity in scoliosis from torso surface cross sections. Spine. 2001;26(14):1583–91.
Oosterhoff JHF, de Hond AAH, Peters RM, van Steenbergen LN, Sorel JC, Zijlstra WP, et al. Machine learning did not outperform conventional competing risk modeling to predict revision arthroplasty. Clin Orthop Relat Res. 2024. https://doi.org/10.1097/corr.0000000000003018.
Article PubMed PubMed Central Google Scholar
Bonner J, Love CJ, Bhat V, Siegler JE. Should they stay or should they go? Stroke transfers across a hospital network pre- and post-implementation of an automated image interpretation and communication platform. Interv Neuroradiol. 2024;15910199241272652. https://doi.org/10.1177/15910199241272652.
Liao GJ, Liao JM, Lalevic D, Zafar HM, Cook TS. Location, location, location: the association between imaging setting and Follow-Up of findings of indeterminate malignant potential. J Am Coll Radiol. 2019;16(6):781–7. https://doi.org/10.1016/j.jacr.2018.11.010.
Allen C, Kumar V, Elwell J, Overman S, Schoch BS, Aibinder W, et al. Evaluating the fairness and accuracy of machine learning-based predictions of clinical outcomes after anatomic and reverse total shoulder arthroplasty. J Shoulder Elb Surg. 2024;33(4):888–99. https://doi.org/10.1016/j.jse.2023.08.005.
Zhang Z, Ke C, Zhang Z, Chen Y, Weng H, Dong J, et al. Re-tear after arthroscopic rotator cuff repair can be predicted using deep learning algorithm. Front Artif Intell. 2024;7:1331853. https://doi.org/10.3389/frai.2024.1331853.
Article PubMed PubMed Central Google Scholar
Kim S, Seon JK, Ko B, Lim JH, Song WC, Kang GR, et al. Outcome prediction model following proximal femoral osteotomy in Legg-Calvé-Perthes disease using machine learning algorithms. J Pediatr Orthop. 2023;43(10):632–9. https://doi.org/10.1097/bpo.0000000000002494.
Yu A, Lee L, Yi T, Fice M, Achar RK, Tepper S, et al. Development and external validation of a machine learning model for prediction of survival in extremity leiomyosarcoma. Surg Oncol. 2024;57:102057. https://doi.org/10.1016/j.suronc.2024.102057.
Howell MD, Corrado GS, DeSalvo KB. Three epochs of artificial intelligence in health care. JAMA. 2024;331(3):242–4.
Wen A, Fu S, Moon S, El Wazir M, Rosenbaum A, Kaggal VC, et al. Desiderata for delivering NLP to accelerate healthcare AI advancement and a Mayo clinic NLP-as-a-service implementation. NPJ Digit Med. 2019;2(1):130.
PubMed PubMed Central Google Scholar
Larrainzar-Garijo R, Fernández-Tormos E, Collado-Escudero CA, Alcantud Ibáñez M, Oñorbe-San Francisco F, Marin-Corral J, et al. Predictive model for a second hip fracture occurrence using natural Language processing and machine learning on electronic health records. Sci Rep. 2024;14(1):532. https://doi.org/10.1038/s41598-023-50762-5.
Article CAS PubMed PubMed Central Google Scholar
Jayakumar P, Moore MG, Furlough KA, Uhler LM, Andrawis JP, Koenig KM, et al. Comparison of an artificial Intelligence-Enabled patient decision aid vs educational material on decision quality, shared decision-Making, patient experience, and functional outcomes in adults with knee osteoarthritis: A randomized clinical trial. JAMA Netw Open. 2021;4(2):e2037107. https://doi.org/10.1001/jamanetworkopen.2020.37107.
Article PubMed PubMed Central Google Scholar
Camarillo DB, Krummel TM, Salisbury JK. Jr. Robotic technology in surgery: past, present, and future. Am J Surg. 2004;188(4A Suppl):2s-15s. https://doi.org/10.1016/j.amjsurg.2004.08.025
Yang GZ, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, et al. Medical robotics-Regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot. 2017;2(4). https://doi.org/10.1126/scirobotics.aam8638.
Kim YH, Yoon SH, Park JW. Does Robotic-assisted TKA result in better outcome scores or Long-Term survivorship than conventional TKA? A randomized, controlled trial. Clin Orthop Relat Res. 2020;478(2):266–75. https://doi.org/10.1097/corr.0000000000000916.
Batailler C, Fernandez A, Swan J, Servien E, Haddad FS, Catani F, et al. MAKO CT-based robotic arm-assisted system is a reliable procedure for total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2021;29(11):3585–98. https://doi.org/10.1007/s00167-020-06283-z.
Martin JW, Slawinski PR, Scaglioni B, Norton JC, Valdastri P, Obstein KL. 382 Assistive-autonomy in colonoscopy: propulsion of a magnetic flexible endoscope. Gastrointest Endosc. 2019;89(6):AB76–7.
Killeen BD, Chaudhary S, Osgood G, Unberath M. Take a shot! Natural Language control of intelligent robotic X-ray systems in surgery. Int J Comput Assist Radiol Surg. 2024;19(6):1165–73. https://doi.org/10.1007/s11548-024-03120-3.
Article PubMed PubMed Central Google Scholar
Shanghavi A, Larranaga D, Patil R, Frazier EM, Ambike S, Duerstock BS, et al. A machine-learning method isolating changes in wrist kinematics that identify age-related changes in arm movement. Sci Rep. 2024;14(1):9765. https://doi.org/10.1038/s41598-024-60286-1.
Article CAS PubMed PubMed Central Google Scholar
Mekhael E, El Rachkidi R, Saliby RM, Nassim N, Semaan K, Massaad A, et al. Functional assessment using 3D movement analysis can better predict health-related quality of life outcomes in patients with adult spinal deformity: a machine learning approach. Front Surg. 2023;10:1166734. https://doi.org/10.3389/fsurg.2023.1166734.
Article PubMed PubMed Central Google Scholar
Pereira B, Cunha B, Viana P, Lopes M, Melo ASC, Sousa ASP. A machine learning app for monitoring physical therapy at home. Sens (Basel). 2023;24(1). https://doi.org/10.3390/s24010158.
Song Z, Ou J, Shu L, Hu G, Wu S, Xu X, et al. Fall risk assessment for the elderly based on weak foot features of wearable plantar pressure. IEEE Trans Neural Syst Rehabil Eng. 2022;30:1060–70. https://doi.org/10.1109/tnsre.2022.3167473.
Daraz L, Morrow AS, Ponce OJ, Beuschel B, Farah MH, Katabi A, et al. Can patients trust online health information?? A Meta-narrative systematic review addressing the quality of health information? on the internet. J Gen Intern Med. 2019;34(9):1884–91. https://doi.org/10.1007/s11606-019-05109-0.
Comments (0)