Model for Calculating Thermoelectric Properties of Nanostructured Material

L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B, 47(19), 12727 (1993); https://doi.org/10.1103/PhysRevB.47.12727.

L.D. Hicks, T.S. Harman, C.M. Dresselhaus, Use of quantum-well superlattices to obtain a high figure of merit fromnonconventional thermoelectric materials: Appl. Phys. Lett. 63, 3230 (1993); https://doi.org/10.1557/PROC-358-1035.

M. Dresselhaus Ed all. D. New directions for low-dimensional thermoelectric materials. Adv. Mater., 19, 1043 (2007); https://doi.org/10.1002/adma.200600527.

R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature (London), 413, 597 (2001); https://doi.org/10.1038/35098012.

J. Zide ed all. Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 74, 205335-5 (2006); https://doi.org/10.1103/PhysRevB.74.205335.

B. Poudel et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008); https://doi.org/10.1126/science.1156446.

S.S. Gomez, R. Romero, Few-electron semiconductor quantum dots with Gaussian confinement. Cent. Eur. J. Phys. 7(1), 12 (2009); https://doi.org/10.2478/s11534-008-0132-z.

R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223 (1957); https://doi.org/10.1147/rd.13.0223.

R. Landauer, Electrical resistance of disordered one dimensional lattices. Philos. Mag. 21, 863 (1970); https://doi.org/10.1080/14786437008238472.

P. Pichanusakorn, P. Bandaru, Nanostructured thermoelectrics. Mat. Scien. and Eng. R 67, 19 (2010); https://doi.org/10.1016/j.mser.2009.10.001.

Yan Sun et all. Strategies to improve the thermoelectric figure of merit in thermoelectric functional materials. Front Chem., 10, 865281 (2022); https://doi.org/10.3389/fchem.2022.865281.

P. Ahuja, Introduction to Numerical Methods in Chemical Engineering. .1 Tridiagonal matrix algorithm (TDMA). ISBN 9788120340183, PHI Learning Pvt. Ltd., Ebook Status : Available, 520 p, (2010).

O.M. Voznyak, P.P. Kostrobij, V.Ye. Polovyi, Modeling of thermoelectric characteristics of nanostructured material. Matematical modeling and computing, 11(3), 904 (2024); https://doi.org/10.23939/mmc2024.03.904.

A.N. Khondker, M.Rezwan Khan, A.F.M. Anwar, Transmission line analogy of resonance tunneling phenomena: The generalized impedance concept. J. Appl. Phys. 63, 5191 (1988); http://dx.doi.org/10.1063/1.341154.

O.M. Voznyak, O.O. Voznyak, An exactly solvable model for calculating the thermoelectric characteristics of a nanostructured material. Journal of Physical Studies, 29(3) (2025) (accepted).

V.M. Galitsky, B.M. Karnakov, V.I. Kogan, Problems in quantum mechanics. M, Nauka, 648 (1981).

Comments (0)

No login
gif